The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1 Winger PV, Albrecht B, Anderson BS, Bay SM, Bona F, Stephenson GL. Comparison of porewater and solid-phase sediment toxicity tests. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 3758. Google Scholar
2 Scroggins R, Berry WJ, Hoke RA, Milligan K, Morrisey DJ, Porebski L. Regulatory applications of porewater testing. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press, 2003. p. 263281. Google Scholar
3 Williamson B, Burgess RM. Sediment and porewater chemistry. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 6388. Google Scholar
4 Carr RS, Biedenbach JM, MacDonald D. Comparison of sediment quality guideline values derived using sea urchin porewater toxicity test data with existing guidelines. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 249260. Google Scholar
5 Zirbser K, Healy R, Stahl L, Tate B, Diamond J, Burton A, Johns M, Scott J. Methods for collecting, storing, and manipulating sediments and interstitial water samples for chemical and toxicological analyses technical manual. Washington DC: U.S. Environmental Protection Agency, Office of Water; 2001. EPA-823-B-01-002. Google Scholar
6 Guide for planning and conducting sediment porewater toxicity identification evaluations (TIE) to determine causes of acute toxicity at Navy aquatic sites. Prepared for Naval Facilities Engineering Service Center, Port Hueneme (CA). Report number UG-2052-ENV. Newport (RI): Science Applications International Corporation; 2003. Google Scholar
7 Ho KT, Burgess RM, Mount DR, Norberg-King TJ, Hockett JR. Sediment toxicity identification evaluation (TIE) phases I, II, and III guidance document. Report number EPA/600/R-07/080. Washington DC: U.S. Environmental Protection Agency, Office of Research and Development; 2007. Google Scholar
8 Anderson BS, Hunt JW, Phillips BM, Tjeerdema RS. Navigating the TMDL process: sediment toxicity. Alexandria (VA): Water Environment Research Foundation, 2007. Google Scholar
9 Ferraz MA, Alvez AV, de Cassia Muniz C, Pusceddu FH, Gusso- Choueri PK, Santos AR, Choueri RB. Sediment toxicity identification evaluation (TIE Phases I and II) based on microscale bioassays for diagnosing caused of toxicity in coastal areas affected by domestic sewage. Environ Toxicol Chem. 2017;36(7):18201832. Google Scholar
1 Adams WJ, Burgess RM, Gold-Bouchot G, Leblanc L, Liber K, Williamson B. Porewater chemistry: effects of sampling, storage, handling, and toxicity testing. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 95120. Google Scholar
2 Nipper M, Burton Jr GA, Chapman DC, Doe KG, Hamer M, Ho KT. Issues and recommendations for porewater toxicity testing: methodological uncertainties, confounding factors, and toxicity identification evaluation procedures. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 143159. Google Scholar
1 Edmunds WM, Bath AH. Centrifuge extraction and chemical analysis of interstitial waters. Environ Sci Technol. 1976;10(5):467472. Google Scholar
2 Giesy JP, Graney RL, Newsted JL, Rosiuand CJ, Benda A, Kreis Jr RG, Horvath FJ. Comparison of three sediment bioassay methods using Detroit River sediments. Environ Toxicol Chem. 1988;7:483498. Google Scholar
3 Landrum PF, Nihart SR, Eadie BJ, Herche LR. Reduction in bioavailability of organic contaminants to the amphipod Pontoporeia hoyi by dissolved organic matter of sediment interstitial waters. Environ Toxicol Chem. 1987;6:1120. Google Scholar
4 Bender M, Martin W, Hess J, Sayles F, Ball L, Lambert C. A whole-core squeezer for interfacial pore-water sampling. Limnol Oceanogr. 1987;32(6):12141225. Google Scholar
5 Carr RS, Chapman DC, Howard CL, Biedenbach JM. Sediment quality triad assessment survey in the Galveston Bay, Texas system. Ecotoxicology. 1996;5(6):341364. Google Scholar
6 Carr RS, Chapman DC. Comparison of solid-phase and pore-water approaches for assessing the quality of marine and estuarine sediments. Chem Ecol. 1992;7(1–4):1930. Google Scholar
7 Jahnke RA. A simple, reliable, and inexpensive pore-water sampler. Limnol Oceanogr. 1988;33(3):483487. Google Scholar
8 Reeburgh WS. An improved interstitial water sampler. Limnol Oceanogr. 1967;12(1)163165. Google Scholar
9 Knezovich JP, Harrison FL. A new method for determining the concentrations of volatile organic compounds in sediment interstitial water. Bull Environ Contam Toxicol. 1987;38(6):937940. Google Scholar
10 Winger PV, Lasier PJ. A vacuum-operated pore-water extractor for estuarine and freshwater sediments. Arch Environ Contam Toxicol. 1991;21(2):321324. Google Scholar
11 Bottomley EZ, Bayly IL. A sediment porewater sampler used in root zone studies of the submerged macrophyte, Myriophyllum spicatum. Limnol Oceanogr. 1984;29(3):671673. Google Scholar
12 Hesslin RH. An in situ sampler for close interval pore water studies. Limnol Oceanogr. 1976;21(6):912914. Google Scholar
13 Nipper M, Burton Jr GA, Chapman DC, Doe KG, Hamer M, Ho KT. Issues and recommendations for porewater toxicity testing: methodological uncertainties, confounding factors, and toxicity identification evaluation procedures. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 143159. Google Scholar
14 Cleveland D, Brumbaugh WG, MacDonald DD. A comparison of four porewater sampling methods for metal mixtures and dissolved organic carbon and the implications for sediment toxicity evaluations. Environ Toxicol Chem. 2017;36(11):29062915. Google Scholar
15 Stephenson GL. Guidance document on collection and preparation of sediment for physicochemical characterization and biological testing. Environmental Protection Series, Ottawa (Ontario): Environment Canada, Technology Development Directorate, 1994. Report number EPS 1/RM/29. Google Scholar
16 Adams WJ, Burgess RM, Gold-Bouchot G, Leblanc L, Liber K, Williamson B. Porewater chemistry: effects of sampling, storage, handling, and toxicity testing. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 95120. Google Scholar
17 Wheelock CE, Miller JL, Miller MJ, Phillips BM, Gee SJ, Tjeerdema RS, Hammock BD. Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca. Aquatic Toxicol. 2005;74(1):4752. Google Scholar
18 Andersen MK, Raulund-Rasmussen K, Strobel BW, Hansen HC. Adsorption of cadmium, copper, nickel, and zinc to a poly(tetrafluorethene) porous soil solution sampler. J Environ Qual. 2002;31(1): 168175. Google Scholar
19 Kinniburgh DG, Miles DL. Extraction and chemical analysis of interstitial water from soils and rocks. Environ Sci Technol. 1983; 17(6):362368. Google Scholar
20 Carr RS, Chapman DC. Comparison of methods for conducting marine and estuarine sediment pore water toxicity tests—extraction, storage and handling techniques. Arch. Environ Contam Toxicol. 1995; 28(1):6977. Google Scholar
21 Schults DW, Ferraro SP, Smith LM, Roberts FA Poindexter CK. A comparison of methods for collecting interstitial water for trace organic compounds and metals analyses. Water Res. 1992;26(7):989995. Google Scholar
22 Zirbser K, Healy R, Stahl L, Tate B, Diamond J, Burton A, Johns M, Scott J. Methods for collecting, storing, and manipulating sediments and interstitial water samples for chemical and toxicological analyses technical manual. Washington DC: U.S. Environmental Protection Agency, Office of Water; 2001. EPA-823-B-01-002. Google Scholar
23 Bertolin A, Rudello D, Ugo P. A new device for in-situ pore-water sampling. Mar Chem. 1995;49(2–3):233239. Google Scholar
24 Watson PG, Frickers TE. A multilevel, in situ pore-water sampler for use in intertidal sediments and laboratory microcosms. Limnol Oceanogr. 1990;35(6):13811389. Google Scholar
25 Carignan R. Interstitial water sampling by dialysis: methodological notes. Limnol Oceanogr. 1984;29(3):667670. Google Scholar
26 Carignan R, Rapin F, Tessier A. Sediment porewater sampling for metal analysis: a comparison of techniques. Geochim Cosmochim Acta 1985;49(11):24932497. Google Scholar
27 Teasdale PR, Batley GE, Apte SC, Webster IT. Pore water sampling with sediment peepers. TrAC Trends Analyt Chem. 1995;14: 250256. Google Scholar
28 Jacobs PH. A new rechargeable dialysis pore water sampler for monitoring sub-aqueous in-situ sediment caps. Water Res. 2002;36(12): 31213129. Google Scholar
1 Carr RS, Williams JW, Fragata CTB. Development and evaluation of a novel marine sediment pore water toxicity test with the polychaete Dinophilus gyrociliatus. Environ Toxicol Chem. 1989;8(6):533543. Google Scholar
2 Carr RS, Chapman DC. Comparison of whole sediment and pore- water toxicity tests for assessing the quality of estuarine sediments. Chem Ecol. 1992;7(1–4):1930. Google Scholar
3 Carr RS, Chapman DC. Comparison of methods for conducting marine and estuarine sediment pore water toxicity tests—extraction, storage and handling techniques. Arch. Environ Contam Toxicol. 1995; 28(1):6977. Google Scholar
4 Long ER, Carr RS, Thursby GA, Wolfe DA. Sediment toxicity in Tampa Bay: incidence, severity, and spatial extent. Florida Scientist. 1995;58(2):163178. Google Scholar
5 Carr RS, Montagna PA, Biedenbach JM, Kalke R, Kennicutt MC, Hooten R, Cripe G. Impact of storm-water outfalls on sediment quality in Corpus Christi Bay, Texas, USA. Environ Toxicol Chem. 2000;19(3):561574. Google Scholar
6 Hose JE, Puffer HW, Oshida PS, Bay SM. Developmental and cytogenetic abnormalities induced in the purple sea urchin by environmental levels of benzo(a)pyren. Arch Environ Contam Toxicol. 1983; 12(3):319325. Google Scholar
7 Kennedy AJ, Lindsay JH, Biedenbach JM, Harmon AR. Life stage sensitivity of the marine mussel Mytilus edulis to ammonia. Environ Toxicol Chem. 2017;36(1):8995. Google Scholar
8 Laughlin Jr RB, Gustafson RG, Pendoley P. Acute toxicity of tributyltin (TBT) to early life history stages of the hard shell clam, Mercenaria mercenaria. Bull. Environ. Contam. Toxicol. 1989:42(3):352358. Google Scholar
9 Hooten RL, Carr RS. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores. Environ Toxicol Chem. 1998;17(5):932940. Google Scholar
10 Long ER, Buchman MF, Bay SM, Breteler RJ, Carr RS, Chapman PM, Hose JE, Lissner AL, Scott J, Wolfe DA. Comparative evaluation of five toxicity tests with sediments from San Francisco Bay and Tomales Bay, California. Environ Toxicol Chem. 1990;9(9): 11931214. Google Scholar
11 Carr RS, Curran MD, Mazurkiewicz M. Evaluation of the archiannelid Dinophilus gyrociliatus for use in short-term life-cycle toxicity tests. Environ Toxicol Chem. 1986;5(7):703712. Google Scholar
12 Reish DJ, Carr RS. The effect of heavy metals on the survival, reproduction, development and life cycles for two species of polychaetous annelids. Mar Pollut Bull. 1978;9(1):2427. Google Scholar
13 Carr RS, Reish DJ. The effect of petroleum hydrocarbons on the survival and life history of polychaetous annelids. In: Wolfe DA D.A., editor. Fate and effects of petroleum hydrocarbons in marine ecosystems and organisms. Proceedings of a Symposium, 1976 Nov 10-12, Seattle (WA). Sponsored by the National Oceanographic and Atmostpheric Administration and Environmental Protection Agency. New York (NY): Pergamon Press, 1977. p. 168173. Google Scholar
14 Roach RW, Carr RS, Howard CL, Cain BW. 1993. An assessment of produced water impacts in Galveston Bay system. Houston (TX): U.S. Fish and Wildlife Service Report, Division of Ecological Services, 1993. Google Scholar
15 Giesy JP, Graney RL, Newsted JL, Rosiu CJ, Benda A, Kreis RG, Horvath FJ. Comparison of three sediment bioassay methods using Detroit River sediments. Environ Toxicol Chem. 1988;7(6):483498. Google Scholar
16 Giesy JP, Rosiu CJ, Graney RL, Henry MG. Benthic invertebrate bioassays with toxic sediment and pore water. Environ Toxicol Chem. 1990;9(2):233248. Google Scholar
17 Ankley GT, Lodge K, Call DJ, Balcer MD, Brooke LT, Cook PM, Kreis Jr RJ, Carlson AR, Johnson RD, Niemi GJ, et al. Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin. Ecotoxicol. Environ. Safety 1992;23(1):4663. Google Scholar
18 Chapman D, Allert A. Los Alamos National Laboratory use study phase II: Toxicity testing of surface waters and pore waters at Los Alamos National Laboratory. U.S. Geological Survey, Biological Resources Division. Columbia (MO): Columbia Environmental Research Center, 1998. [accessed 2 May 2019] https://catalog.data.gov/dataset?tags=water-quality-chemistry&bureauCode=10%3A18. Google Scholar
19 Winger PV, Lasier PJ, Geitner H. Toxicity of sediments and pore water from Brunswick Estuary, Georgia. Arch Environ Contam Toxicol. 1993;25(3):371376. Google Scholar
20 Phillips BM, Anderson BS, Hunt JW, Clark SL, Voorhees JP, Tjeerdema RS, Casteline J, Stewart M. Evaluation of phase II toxicity identification evaluation methods for freshwater whole sediment and interstitial water. Chemosphere 2009;74(5):648653. Google Scholar
21 Macken A, Giltrap M, Foley B, McGovern E, McHugh B, Davoren M. An integrated approach to the toxicity assessment of Irish marine sediments: application of porewater toxicity identification evaluation (TIE) to Irish marine sediments. Environ Int. 2009;35(1):98106. Google Scholar
22 Rosen G, Robayo MA, Rivera-Duarte I, Lapota D. A comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity. Arch Environ Contam Toxicol. 2008;54(4):606611. Google Scholar
23 Toussaint MW, Shedd TR, van der Schalie WH, Leather GR. A comparison of standard acute toxicity tests with rapid-screening toxicity tests. Environ Toxicol Chem. 1995;14(5):907915. Google Scholar
24 Kaiser KLE, Palabrica VS. Photobacterium phosphoreum toxicity data index. Water Qual Res J. 1991;26(3):361431. Google Scholar
25 Adams WJ, Burgess RM, Gold-Bouchot G, Leblanc L, Liber K, Williamson B. Porewater chemistry: effects of sampling, storage, handling, and toxicity testing. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 95120. Google Scholar
26 Costello DM, Hammerschmidt CR, Burton Jr GA. Nickel partitioning and toxicity in sediment during aging: variation in toxicity related to stability of metal partitioning. Environ Sci Technol. 2016;50(20):1133711345. Google Scholar
27 Costello DM, Hammerschmidt CR, Burton GA. Copper sediment toxicity and partitioning during oxidation in a flow-through flume. Environ Sci Technol. 2015;49(11):69266933. Google Scholar
28 Chandler GT, Schlekat CE, Garman ER, He LJ, Washburn KM, Stewart ER, Ferry JL. Sediment nickel bioavailability and toxicity to estuarine crustaceans of contrasting bioturbative behaviors—an evaluation of the SEM-AVS paradigm. Environ Sci Technol. 2014;48(21): 1289312901. Google Scholar
29 Williamson B, Burgess RM. Sediment and porewater chemistry. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 6388. Google Scholar
30 Doe KG, Burton Jr GA, Ho KT. Porewater toxicity testing: An overview. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 125137. Google Scholar
31 Hampson BL. Relationship between total ammonia and free ammonia in terrestrial and ocean waters. ICES J Marine Sci. 1977;37(2): 117122. Google Scholar
32. ECOTOX knowledgebase. United States Environmental Protection Agency. https://cfpub.epa.gov/ecotox/ [accessed 3 Aug 2019]. Google Scholar
33 Nipper M, Burton Jr GA, Chapman DC, Doe KG, Hamer M, Ho KT. Issues and recommendations for porewater toxicity testing: methodological uncertainties, confounding factors, and toxicity identification evaluation procedures. In: Carr RS, Nipper M, editors. Porewater toxicity testing: biological, chemical and ecological considerations. Pensacola (FL): SETAC Press; 2003. p. 143159. Google Scholar
34 Jenne EA. Sediment quality criteria for metals: II. Review of methods for quantitative determination of important adsorbents and sorbed metals in sediments. Washington DC: Battelle, Pacific Northwest Laboratories, Richland Washington for US Environmental Protection Agency, Criteria and Standards Division; 1987. Google Scholar
35 Allen HE, Fu G, Boothman W, DiToro DM, Mahoney JD. Determination of acid volatile sulfides (AVS) and simultaneously extracted metals in sediment. Draft analytical method for determination of acid volatile sulfide in sediment. Washington DC: US Environmental Protection Agency, Office of Science and Technology; Dec 1991. EPA-821-R-91-100. Google Scholar
36 Ankley GT, Phipps GL, Leonard EN, Benoit DA, Mattson VR, Kosian PA, Cotter AM, Dierkes JR, Hansen DJ, Mahony JD. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ Toxicol Chem. 1991:10(10): 12991307. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 8080 sediment porewater testing In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.156

SHARE

FROM THE DISCUSSION FORUM: