The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Fenchel T. Ecology of Protozoa—The biology of free-living phagotrophic protists. Madison (WI): Science Tech Publishers; 1987. Google Scholar
2. Porter KG, Sherr EB, Sherr BF, Pace M, Sanders RW. Protozoa in planktonic food webs. J Protozool. 1985;32(3):409415. Google Scholar
3. Pace ML, Orcutt Jr JD. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol Oceanogr. 1981;26(5):822830. Google Scholar
4. Sherr EB, Sherr BF. High rates of consumption of bacteria by pelagic ciliates. Nature. 1987;325(6106):710711. Google Scholar
5. Pratt JR, Cairns Jr J. Functional groups in the protozoa: roles in differing ecosystems. J Protozool. 1985;32(3):415423. Google Scholar
6. Clarholm M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem. 1985;17(2): 181187. Google Scholar
7. Sla´dec´ek V. System of water quality from the biological point of view. Arch Hydrobiol. Beih Ergebn Limnol. 1973;7:1. Google Scholar
8. Wells PG, Lee K, Blaise C. Microscale testing in aquatic toxicology: advances, techniques, and practice. Boca Raton (FL): CRC Press; 1998, p. 679. Google Scholar
9. Nalecz-Jawecki G. Spirotox—Spirostomum ambiguum acute toxicity test: 10 years of experience. Environ Toxicol. 2004;19(4): 359364. Google Scholar
10. Cairns Jr J. Protozoans (Protozoa). Pollution ecology of freshwater invertebrates. New York (NY): Academic Press Inc.;1974. Google Scholar
11. Blaise C, Feraned JF.Small-scale freshwater toxicity investigations: toxicity methods, New York (NY): Springer-Verlang; 2005, p. 551. Google Scholar
12. Lynn DH, Gilron GL. A brief review of approaches using ciliated protists to assess aquatic ecosystem health. J Aquat Ecosys Health. 1992;1(4):263270. Google Scholar
13. Gilron GL, Lynn DH. Ciliated protozoa as test organisms in toxicity assessments. In: Wells P, Lee K, Blaise C, eds. Microscale testing in aquatic toxicology: advances, techniques, and practice. Boca Raton (FL): CRC Press; 1998, p. 323. Google Scholar
14. Persoone G, Anssen C, De Coen W. New microbiotests for routine screening and biomonitoring. New York (NY): Springer; 2000, p. 207. Google Scholar
1. Dive D, Robert S, Angrand E, Bel C, Bonnemain H, Brun L, Demarque Y, Le Du A, El Bouhouti R, Fourmaux MN, et al. A bioassay using the measurement of the growth inhibition of a ciliate protozoan: Colpidium campylum Stokes. Hydrobiologia. 1989;188/189:181188. Google Scholar
2. Dive D, C. Blaise C, & A. Le Du A. Standard protocol proposal for undertaking the Colpidium campylum ciliate protozoan growth inhibition test. Angewandte Zool. 1991;78(1):7990. Google Scholar
3. Dive D, Leclerc H. Utilisation du protozoaire Colpidium campylum pour le mesure de la toxicite´ et de l’accumulation des micropollutants: Analyse critique et applications. Environ Pollut. 1977;14(3): 169186. Google Scholar
4. Dive D, Leclerc H. Standardized test method using protozoa for measuring water pollutant toxicity. Prog Water Technol. 1975;7(2):6772. Google Scholar
5. Dive D, Blaise C, Robert S, Le Du A, Bermingham N, Cardin R, Kwan A, Legault R, MacCarthy L, Moul D, Veilleux L. 1990. Canadian workshop on the Colpidium campylum ciliate protozoan growth inhibition test. Angewandte Zool. 77(1):4963. Google Scholar
6. Forge TA, Berrow ML, Darbyshire JF, Warren A. Protozoan bioassays of soil amended with sewage sludge and heavy metals, using the common soil ciliate Colpoda steinii. Biol Fertil Soils. 1993;16(4):282286. Google Scholar
7. Janssen MPM, Oosterhoff C, Heijmans GJSM, Van der Voet H. The toxicity of metal salts and the population growth of the ciliate Colpoda cucculus. Bull Environ Contamin Toxicol. 1995;54(4):597605. Google Scholar
8. Plesner P, Rasmussen L, Zeuthen E. Techniques used in the study of synchronous Tetrahymena. In: Zeuthen EE, ed. Synchrony in cell division and growth. New York (NY): John Wiley & Sons; 1964, p. 543. Google Scholar
9. Dive DG, Rasmussen L. Growth studies on Colpidium campylum under axenic conditions. J Protozool. 1978;25(3):42A. Google Scholar
10. Stephan CE. Methods for calculating an LC50. In: Mayer FL, Hamelink JL, eds. Aquatic toxicology and hazard evaluation; ASTM STP 634, p. 65. Philadelphia (PA): American Society of Testing & Materials, 1977. Google Scholar
1. Hellung-Larsen P, Leick V, Tommerup N, Kronborg D. Chemotaxis in Tetrahymena. Europ J Protistol. 1990;25(3):229233. Google Scholar
2. Van Houten J, Martel E, Kasch T. Kinetic analysis of chemokinesis of Paramecium. J Protozool. 1982;29(2):226230. Google Scholar
3. Berk SG, Gunderson JH, Derk LA. Effects of cadmium and copper on chemotaxis of marine and freshwater ciliates. Bull Environ Contam Toxicol. 1985;34(1):897903. Google Scholar
4. Roberts RO, Berk SG. Development of a protozoan chemoattraction bioassay for evaluating toxicity of aquatic pollutant. Toxic Assess. 1990;5(3):279292. Google Scholar
5. Berk SG, Mills BA, Stewart KC, Ting RS, Roberts RO. Reversal of phenol and naphthalene effects on ciliate chemoattraction. Bull Environ Contam Toxicol. 1990;44(2):181188. Google Scholar
6. Gilron G, Gransden SG, Lynn DH, Broadfoot J, Scroggins R. A behavioral toxicity test using the ciliated protozoan Tetrahymena thermophila. I. Method description. Environ. Toxicol. Chem. 1999;18(8):18131816. Google Scholar
7. Snedecor GW, Cochran WG. Statistical methods, 7th ed. Ames: Iowa State University Press; 1980. Google Scholar
8. An interpolation estimate for chronic toxicity: the ICP approach. Duluth (MN): Environmental Research Lab, U.S. Environmental Protection Agency; 1993. Google Scholar
9. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms; EPA-821-R-02-014. 3rd ed. Washington DC: Office of Water, U.S. Environmenal Protection Agency; 2002. Google Scholar
1. Greene JC, Bartels CL, Warren-Hicks WJ, Parkhurst BR, Linder GL, Peterson SA, Miller WE. Protocol for short term toxicity screening of hazardous waste sites; EPA-600/3-88-029. Corvallis (OR): Environmental Research Laboratory, U.S. Environmental Protection Agency; 1989 . Google Scholar
2. Environment Canada. Biological test method: growth inhibition test using the freshwater alga, Selenastrum capricornutum.EPS Report. Ottawa, Ontario: Conservation and Protection; 1992. Google Scholar
3. Pratt JR, Mochan D, Xu Z. Rapid toxicity estimation using soil ciliates: sensitivity and bioavailability. Bull Environ Contam Toxicol. 1997;58(3):387393. Google Scholar
4. Pratt JR, Mochan DG, Bowers NJ. Ciliate biomicrotest application: metal contamination in water and soil. In: Wells PG, Lee K, Blaise C, eds. Microscale testing in aquatic toxicology: advances, techniques, and practice. Boca Raton (FL): CRC Press; 1998, p. 679. Google Scholar
5. Berthold A, Jahl T. Soil ciliate bioassay for the pore water habitat. J Soils Sediments. 2002;2(4):179193. Google Scholar
6. Snedecor GW, Cochran WG. Statistical methods, 7th ed. Ames: Iowa State University Press; 1980. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 8310 ciliated protozoa In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.164

SHARE

FROM THE DISCUSSION FORUM: