The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Merritt RW, Cummins KW. An introduction to the aquatic insects of North America, 4th ed. Dubuque (IA): Kendall/Hunt Publishing Co.; 2008. Google Scholar
2. Resh VH, Rosenburg DM. The ecology of aquatic insects. New York (NY): Praeger Scientific; 1984. Google Scholar
3. Arnett RH Jr. American insects: a handbook of the insects of America north of Mexico. Gainesville (FL): Sandhill Crane Press, Inc.; 1993. Google Scholar
4. Hynes HB. Ecology of running waters. Buffalo (NY): University of Toronto Press; 1970. Google Scholar
5. Allen JD, Castillo MM. Stream ecology: structure and function of running waters, 2nd ed. New York (NY): Springer; 2007. Google Scholar
6. Hart CW Jr, Fuller SCH. Pollution Ecology of Freshwater Invertebrates. New York (NY): Academic Press; 1974. Google Scholar
7. Mayer FL Jr, Ellersieck MR. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals; Resource Publication 160. Washington DC: Fish and Wildlife Service. U.S. Department of the Interior; 1986. Google Scholar
8. Rayms-Keller A, Olson KE, McGaw M, Oray C, Carlson JO, Beaty BJ. Effect of heavy metals on Aedes aegypti (Diptera:Culicide) larvae. Ecotoxicol Environ Safety. 1998;39(1):4147. Google Scholar
9. Adams WJ, Rowland CD. Aquatic toxicology test methods. In: D.J. Hoffman DJ, B.A. Rattner BA, G.A. Burton GA, Cairns J Jr, eds. Handbook of ecotoxicology, 2nd ed. Boca Raton (FL): Lewis Publishers; 2003. Google Scholar
10. American Society for Testing and Materials. Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates; E. 1706-05(2010). West Conshohocken (PA): ASTM International, 2010. Google Scholar
11. American Society for Testing and Materials. Standard guide for conducting acute toxicity tests on aqueous ambient samples and effluents with fishes, macroinvertebrates, and amphibians; E. 719-96(2007). West Conshohocken (PA): ASTM International; 2009. Google Scholar
Edmundson WT. Freshwater biology, 2nd ed. New York (NY): Wiley Interscience, 1959. Google Scholar
Macan TT. Freshwater ecology. New York (NY): Wiley Interscience; 1963. Google Scholar
Pennak R. Fresh-water invertebrates of the United States, 3rd ed. New York (NY): Wiley Interscience; 1989. Google Scholar
1. Buikema AL, Voshell JR Jr. Toxicity studies using freshwater benthic macroinvertebrates. In: Rosenberg DM, Resh VH, eds. Freshwater biomonitoring and benthic macroinvertebrates. New York (NY): Chapman-Hall; 1993, p. 344. Google Scholar
2. U.S. Environmental Protection Agency. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd ed.; EPA-600/R-99-064. Duluth (MN): U.S. Environmental Protection Agency, 2000. Google Scholar
3. American Society for Testing and Materials. Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates; E. 1706-05(2010). West Conshohocken (PA): ASTM International, 2010. Google Scholar
4. Environment Canada. Biological Test Method: test for survival and growth in sediment using the larvae of freshwater midges (Chironomus tentans or Chironomus riparius); EPS. 1/RM/32. Ottawa (Ont): Environment Canada; 1997, p. 125. (Environmental Protection Series) Google Scholar
5. Bedard D, Hayton A, Persuad D. Ontario Ministry of the Environment laboratory sediment biological testing protocol. Queen’s Printer for Ontario; 1992, p 26. Google Scholar
6. Ontario Ministry of the Environment. Hexagenia spp. test for survival and growth in sediment (HXMOE-E3444). Toronto, Ontario, Canada: Laboratory Services Branch; 2008. Google Scholar
7. Surber EW, Thatcher TO. Laboratory studies of the effects of alkyl benzine sulfonate (ABS) on aquatic invertebrates. Trans Amer Fish Soc. 1963;92(2):152160. Google Scholar
8. Greer IE. Standard operating procedures for culture of Chironomids (SOP B5.25) and Hyallella azteca (SOP B5.38). Columbia (MO): National Biological Services; 1993. Google Scholar
9. Fremling CR, Schoening GL. Artificial substrates for Hexagenia may-fly nymphs. In: Proceedings of the International Conference on Ephemeroptera; 1973, p. 209. Google Scholar
10. Merritt RW, Cummins KW. An introduction to the aquatic insects of North America, 4th ed. Dubuque (IA): Kendall/Hunt Publishing Co.; 2008. Google Scholar
11. Nebeker AV. Effect of high winter water temperatures on adult emergence of aquatic insects. Water Res. 1972;5(9):777778. Google Scholar
12. Bay EC. An inexpensive filter-aquarium for rearing and experimenting with aquatic invertebrates. Turtox News 1967;45:146148. Google Scholar
Brever KD. A rearing technique for the colonization of chironomid midges. Ann Entomol Soc Amer. 1965;58(2):135136. Google Scholar
Fremling CR. Methods for mass-rearing Hexagenia mayflies (Ephemeroptera:Ephemeridae). Trans Amer Fish Soc. 1967;96(4):407410. Google Scholar
Nebeker AV. Effect of low oxygen concentration on survival and emergence of aquatic insects. Trans Amer Fish Soc. 1972;101(4):675679. Google Scholar
Anderson NH. Continuous rearing of the limnephilid caddisfly, Clistoronia magnifica (Banks). In: Crichton MI, ed. Proceedings of the Second International Symposium on Trichoptera; 1977 July; Reading, England. The Hague: Dr. W. Junk, Publishers; 1978, p. 317. Google Scholar
Benoit DA, Sibley FK, Juenemann JL, Ankley GT. Chironomus tentans life-cycle test: design and evaluation for use in assessing toxicity of contaminated sediments. Environ Toxicol Chem. 1997;16(6):11651176. Google Scholar
Pennak R. Fresh-water invertebrates of the United States, 3rd ed. New York (NY): Wiley Interscience; 1989. Google Scholar
1. American Society for Testing and Materials. Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates; E. 1706-05(2010). West Conshohocken (PA): ASTM International, 2010. Google Scholar
2. Surber EW, Thatcher TO. Laboratory studies of the effects of alkyl benzine sulfonate (ABS) on aquatic invertebrates. Trans Amer Fish Soc. 1963;92(2):152160. Google Scholar
3. Rodrigues CS, Kaushik NK. A bioassay apparatus for the evaluation of black fly (Diptera:Simuliidae) larvicides. Can Entomol. 1984;116(1):7578. Google Scholar
4. Benoit DA, Sibley FK, Juenemann JL, Ankley GT. Chironomus tentans life-cycle test: design and evaluation for use in assessing toxicity of contaminated sediments. Environ Toxicol Chem. 1997;16(6):11651176. Google Scholar
5. Ontario Ministry of the Environment. Hexagenia spp. test for survival and growth in sediment (HXMOE-E3444). Toronto, Ontario, Canada: Laboratory Services Branch; 2008. Google Scholar
6. Sibley PK, Ankley GT, Cotter AM, Leonard EN. Predicting chronic toxicity of sediments spiked with zinc: an evaluation of the acid volatile sulfide model using a life cycle test with the midge Chironomus tentans. Environ Toxicol Chem. 1996;15(12):21022112. Google Scholar
7. Sibley PK, Benoit DA, Ankley GT. The significance of growth in Chironomus tentans sediment toxicity tests: relationship to reproduction and demographic endpoints. Environ Toxicol Chem. 1997;16(2):336345. Google Scholar
8. Sibley PK, Benoit DA, Ankley GT. Factors affecting reproduction and the importance of adult size on reproductive output of the midge Chironomus tentans. Environ Toxicol Chem. 2001; 20(6):12961303. Google Scholar
9. Pascoe D, Williams KA, Green DWJ. Chronic toxicity of cadmium to Chironomus riparius Meigen—effects upon larval development and adult emergence. Hydrobiologia. 1989;175:109115. Google Scholar
10. Watts MM, Pascoe D, Carroll K. Chronic exposure to 17α-ethinylestradiol and bisphenol A—effects on development and reproduction in the freshwater invertebrate Chironomus riparius (Diptera:Chironomidae). Aquat Toxicol. 2001;55(1-2):113124. Google Scholar
11. Forbes VE, Cold A. Effects of the pyrethroid esfenvalerate on life-cycle traits and population dynamics of Chironomus riparius—importance of exposure scenario. Environ Toxicol Chem. 2005;24(1):7886. Google Scholar
12. U.S. Environmental Protection Agency. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd ed.; EPA-600/R-99-064. Duluth (MN): U.S. Environmental Protection Agency, 2000. Google Scholar
13. Organisation for Economic Development and Cooperation. Sediment-water chironomid toxicity test using spiked sediment. Guideline for testing chemicals, No. 218, adopted April 13. Paris, France; 2004. Google Scholar
14. Environment Canada. Biological test method: test for survival and growth in sediment using the larvae of freshwater midges (Chironomus tentans or Chironomus riparius); EPS. 1/RM/32. Ottawa (Ont): Environment Canada: 1997, p. 125 (Environmental Protection Series) Google Scholar
Nebeker AV, Lemke AE. Preliminary studies on the tolerance of aquatic insects to heated waters. J Kans Entomol. Soc. 1968;41(3):413418. Google Scholar
Nebeker AV. Effect of high winter water temperatures on adult emergence of aquatic insects. Water Res. 1972;5(9):777778. Google Scholar
Fremling CR, Schoening GL. Artificial substrates for Hexagenia may-fly nymphs. In: Proceedings of the International Conference on Ephemeroptera; 1973, p. 209. Google Scholar
Fremling CR, Mauck WL. Methods for using nymphs of burrowing mayflies (Ephemeroptera, Hexagenia) as toxicity test organisms. In: Buikema AL, Cairns J, eds. Aquatic invertebrate bioassays; ASTM STP 715. Philadelphia (PA): American Society of Testing and Materials; 1980. Google Scholar
American Society of Testing and Materials. ASTM. standards on aquatic toxicology and hazard evaluation; Pub. 03-547093-16. Philadelphia (PA): American Society of Testing and Materials; 1993. Google Scholar
Saouter E, Hare L, Campbell PGC, Boudou A, Ribeyre F. Mercury accumulation in the burrowing mayfly, Hexagenia rigida (Ephemeroptera) exposed to CH3HgCl or HgCl2 in water and sediment. Water Res. 1993; 27(6):10411048. Google Scholar
Wood LW, O’Keefe P, Bush B. Similarity analysis of PAH and PCB bioaccumulation patterns in sediment exposed Chironomus tentans larvae. Environ Toxicol Chem. 1977;16(2):283292. Google Scholar
Pinkney AE, McGowan PC, Murphy DR, Lowe TP, Sparling DW, Ferrington LC. Effects of the mosquito larvicides temephos and methoprene on insect populations in experimental ponds. Environ Toxicol Chem. 2000;19(3):678684. Google Scholar
Van der Geest HG, Greeve GD, Kroon A, Kuijl S, Kraak MHS, Admiral W. Sensitivity of characteristic riverine insects, the caddisfly Cyrnus trimaculatus and the mayfly Ephoron virgo, to copper and diazinon. Environ Pollut. 2000;109(2):177182. Google Scholar
American Society for Testing and Materials. Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians; E729-96 (2002). In: Annual Book of ASTM. Standards, Vol. 11.05. West Conshohocken (PA): ASTM International; 2004. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 8750 aquatic insects In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.173

SHARE

FROM THE DISCUSSION FORUM: