The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbiol Ecol. 1982;8:313323. Google Scholar
2. Rahman I, Shahamat M, Kirchman PA, Russek-Cohen E, Colwell RR. Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl Environ Microbiol. 1994;60(10):35733578. Google Scholar
3. Oliver JD. The viable but nonculturable state in bacteria. J Microbiol. 2005;43:93100. Google Scholar
4. Lleò MM, Pierobon S, Tafi MC, Signoretto C, Canepari P. mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl Environ Microbiol. 2000;66(10):45644567. Google Scholar
5. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human pathogens. Front Microbiol. 2014;5:258. Google Scholar
6. Zhang XH, Ahmad W, Zhu XY, Chen J, Austin B. Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms. Mar Life Sci Technol. 2021;3:189203. Google Scholar
7. Nilsson L, Oliver JD, Kjelleberg S. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol. 1991;173(16):50545059. Google Scholar
8. Oliver JD, Bockian R. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol. 1995;61(7):26202623. Google Scholar
9. Oliver JD, Hite F, McDougald D, Andon NL, Simpson LM. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl Environ Microbiol. 1995;61(7):26242630. Google Scholar
10. Smith BE, Oliver JD. In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl Environ Microbiol. 2006;72(2):14451451. Google Scholar
11. Kong I-S, Bates TC, Hülsmann A, Hassan H, Smith BE, Oliver JD. Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol Ecol. 2004;50(3):133142. Google Scholar
12. Pinto D, Almeida V, Almeida Santos M, Chambel L. Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J Appl Microbiol. 2011;110(6):16011611. Google Scholar
13. Coutard F, Lozach S, Pommepuy M, Hervio-Heath D. Real-time reverse transcription-PCR for transcriptional expression analysis of virulence and housekeeping genes in viable but nonculturable Vibrio parahaemolyticus after recovery of culturability. Appl Environ Microbiol. 2007;73(16):51835189. Google Scholar
14. Casasola-Rodriguez B, Ruiz-Palacios GM, Pilar RC, Losano L, Ignacio MR, Orta de Velasquez MT. Detection of VBNC Vibrio cholerae by RT-real time PCR based on differential gene expression analysis. FEMS Microbiol Lett. 2018;365(15):18. Google Scholar
15. Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Rev. 2010;34(4):415425. Google Scholar
16. Ayrapetyan M, Williams TC, Oliver JD. Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios. Appl Environ Microbiol. 2014;80(8):24782483. Google Scholar
17. Steinert M, Emödy L, Amann R, Hacker J. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl Environ Microbiol. 1997;63(5):20472053. Google Scholar
18. Nowakowska J, Oliver JD. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol Ecol. 2013;84(1):213222. Google Scholar
19. Dietersdorfer E, Kirschner A, Schrammel B, Ohradanova-Repic A, Stockinger H, Sommer R, Walochnik J, Cervero-Aragó S. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages. Water Research. 2018;141:428438. Google Scholar
20. McFeters GA, Kippin JS, LeChevallier MW. Injured coliforms in drinking water. Appl Environ Microbiol. 1986;51(1):15. Google Scholar
21. LeChevallier MW, McFeters GA. Enumerating injured coliforms in drinking water. J Amer Water Works Assoc. 1985;77(6):8187. Google Scholar
22. Bucklin KE, McFeters GA, Amirtharajah A. Penetration of coliforms through municipal drinking water filters. Water Res. 1991;25(8):10131017. Google Scholar
23. LeChevallier MW, Singh A, Schiemann DA, McFeters GA. Changes in virulence of waterborne enteropathogens with chlorine injury. Appl Environ Microbiol. 1985;50(2):412419. Google Scholar
24. Singh A, McFeters GA. Recovery, growth and production of heat-stable enterotoxin by Escherichia coli after copper-induced injury. Appl Environ Microbiol. 1986;51(4):738742. Google Scholar
25. Singh A, Yeager R, McFeters GA. Assessment of in vivo revival, growth, and pathogenicity of Escherichia coli strains after copper- and chlorine-induced injury. Appl Environ Microbiol. 1986;52(4):832837. Google Scholar
26. McFeters GA, LeChevallier MW, Singh A, Kippin JS. Health significance and occurrence of injured bacteria in drinking water. Water Sci Technol. 1986;18(10):227231. Google Scholar
27. Ayrapetyan M, Williams T, Oliver JD. Relationship between the viable but nonculturable state and antibiotic persister cells. J Bacteriol. 2018;200(20):e0024918. Google Scholar
1. McFeters GA, Cameron SC, LeChevallier MW. Influence of diluents, media, and membrane filters on detection of injured waterborne coliform bacteria. Appl Environ Microbiol. 1982;43(1):97103. Google Scholar
2. LeChevallier MW, McFeters GA. Interactions between heterotrophic plate count bacteria and coliform organisms. Appl Environ Microbiol. 1985;49(5):13381341. Google Scholar
3. McFeters GA, Kippin JS, LeChevallier MW. Injured coliforms in drinking water. Appl Environ Microbiol. 1986;51(1):15. Google Scholar
4. Domek MJ, LeChevallier MW, Cameron SC, McFeters GA. Evidence for the role of copper in the injury process of coliform bacteria in drinking water. Appl Environ Microbiol. 1984;48(2):289293. Google Scholar
5. Maxcy R. Non-lethal injury and limitations of recovery of coliform organisms on selective media. J Milk Food Technol. 1970;33(10):445448. Google Scholar
6. LeChevallier MW, Cameron SC, McFeters GA. 1983. New medium for improved recovery of coliform bacteria from drinking water. Appl Environ Microbiol. 45(2):484-492. Google Scholar
7. Watters SK, Pyle BH, LeChevallier MW, McFeters GA. Enumeration of Enterobacter cloacae after chloramine exposure. Appl Environ Microbiol. 1989;55(12):32263228. Google Scholar
8. LeChevallier MW, Jakanoski PE, Camper AK, McFeters GA. Evaluation of m-T7 agar as a fecal coliform medium. Appl Environ Microbiol. 1984;48(2):371375. Google Scholar
9. Rose RE, Geldreich EE, Litsky W. Improved membrane filter method for fecal coliform analysis. Appl Microbiol. 1975;29(4):532536. Google Scholar
10. Geldreich EE, Clark HF, Huff CB, Best LC. Fecal-coliform-­organism medium for the membrane filter technique. J Amer Water Works Assoc. 1965;57(2):208214. Google Scholar
11. Presswood WG, Strong DK. Modification of M-FC medium by eliminating rosolic acid. Appl Environ Microbiol. 1978;36(1):9094. Google Scholar
12. Lin SD. Membrane filter method for recovery of fecal coliforms in chlorinated sewage effluents. Appl Environ Microbiol. 1976;32(4):547552. Google Scholar
13. Green BL, Clausen EM, Litsky W. Two-temperature membrane filter method for enumerating fecal coliform bacteria from chlorinated effluents. Appl Environ Microbiol. 1977;33(6):12591264. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 9212 stressed, injured, or viable but nonculturable bacteria In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.186

SHARE

FROM THE DISCUSSION FORUM: