The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Tuhela L, Carlson L, Tuovinen OH. Biogeochemical transformations of Fe and Mn in oxic groundwater and well water environments. J Environ Sci Health. 1997;32(2):407426. Google Scholar
2. Robbins EI, D’Agostino JP, Ostwald J, Fanning DS, Carter V, Van Hoven RL. Manganese nodules and microbial oxidation of manganese in the Huntley Meadows Wetland, Virginia, USA. In: Skinner HCW, Fitzpatrick RW, eds. Biomineralization processes. Cremlingen-Destedt: Catena Verlag; 1992, p. 179. Google Scholar
3. Ghiorse WC. Biology of iron- and manganese-depositing bacteria. Ann Rev Microbiol. 1984;38(1):515550. Google Scholar
4. Emerson D, Revsbech NP. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: Field studies. Appl Environ Microbiol. 1994;60(11):40224031. Google Scholar
5. Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol. 1997;63(12):47844792. Google Scholar
6. Emerson D, Weiss JV. Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Gemicrobiol J. 2004;21(6):405414. Google Scholar
7. Wojcik W, Wojcik M. Monitoring biofouling. In: Cullimore DR, ed. Proc. International Symposium on Biofouled Aquifers: Prevention and Restoration. Bethesda (MD): American Water Resources Association; 1986. Google Scholar
8. Cholodny N. Uber eine neue methode zur unterschung den bodenmikro flora. Arch Mikrobiol. 1930;1:650652. Google Scholar
9. Howsam P, Tyrrel S. Diagnosis and monitoring of biofouling in enclosed flow systems—experience in groundwater systems. Biofouling. 1989;1(4):343351. Google Scholar
10. Pedersen K. Method for studying microbial biofilms in flowing-water systems. Appl Environ Microbiol. 1982;43(1):613. Google Scholar
11. Smith SA. Methods for monitoring iron and manganese biofouling in water supply wells. Denver (CO): AWWA Research Foundation; 1992. Google Scholar
12. Smith SA, Tuovinen OH. Biofouling monitoring methods for preventive maintenance of water wells. In: Howsam P, ed. Water wells monitoring, maintenance, and rehabilitation. London (UK): E & FN Spon; 1990, p. 75. Google Scholar
13. Lueschow LA, Mackenthun KM. Detection and enumeration of iron bacteria in municipal water supplies. J Amer Water Works Assoc. 1962;54(6):751756. Google Scholar
14. Starkey RL. Transformations of iron by bacteria in water. J Amer Water Works Assoc 1945;37(10):963984. Google Scholar
15. Stokes JL. Studies on the filamentous sheathed iron bacterium Sphaerotilus natans. J Bacteriol. 1954;67(3):278291. Google Scholar
16. Kucera S, Wolfe RS. A selective enrichment method for Gallionella ferruginea. J Bacteriol. 1957;74(3):344349. Google Scholar
17. Waitz S, Lackey JB. Morphological and biochemical studies on the organism Sphaerotilus natans. Quart J Fla Acad Sci. 1958;21(4):335340. Google Scholar
18. Wolfe RS. Cultivation, morphology, and classification of the iron bacteria. J Amer Water Works Assoc. 1958;50(9):12411249. Google Scholar
19. Wolfe RS. Observations and studies of Crenothrix polyspora. J Amer Water Works Assoc. 1960;52(7):915918. Google Scholar
20. Wolfe RS. Microbial concentration of iron and manganese in water with low concentrations of these elements. J Amer Water Works Assoc. 1960;52(10):13351337. Google Scholar
21. Dondero NC, Philips RA, Heukelekian H. Isolation and preservation of cultures of Sphaerotilus. Appl Microbiol 1961;9(3):219227. Google Scholar
22. Mulder EG. Iron bacteria, particularly those of the Sphaerotilus- Leptothrix group, and industrial problems. J Appl Bacteriol. 1964; 27(1):151173. Google Scholar
23. Drake CH. Occurrence of Siderocapsa treubii in certain waters of the Niederrhein. Gewasser Abwasser 1965;39(40):4163. Google Scholar
24. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB, eds. Bergey’s manual of systematic bacteriology: volume 3: The Firmicutes. New York (NY): Springer-Verlag; 2005. Google Scholar
25. Siering PL, Ghiorse WC. Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples. Appl Environ Microbiol. 1997;63(2):644651. Google Scholar
26. Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M. Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. PNAS. 2006;103(7):23632367. Google Scholar
1. Lackey JB, Lackey EW. The habitat and description of a new genus of sulphur bacterium. J Gen Microbiol. 1961;26(1):2939. Google Scholar
2. Faust L, Wolfe RS. Enrichment and cultivation of Beg-giatoa alba. J Bacteriol. 1961;81(1):99106. Google Scholar
3. Morgan GB, Lackey JB. Ecology of a sulfuretum in a semi-tropical environment. Z Allg Mikrobiol. 1965;5(3):237248. Google Scholar
4. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB, eds. Bergey’s manual of systematic bacteriology: volume 3: The Firmicutes. New York (NY): Springer-Verlag; 2005. Google Scholar
1. Smith SA. Methods for monitoring iron and manganese biofouling in water supply wells. Denver (CO): AWWA Research Foundation; 1992. Google Scholar
2. Smith SA. Biological deposition in source and treated waters: status of available methods for routine practice, sampling environmental media (ASTM STP 1282). Morgan JH, ed. Philadelphia (PA): American Society for Testing and Materials; 1995. Google Scholar
3. Gariboglio MA, Smith SA. Corrosion e encrustacion microbiológica en sistemas de captación y conducción de agua – aspectos teóricos y aplicados. San Martin CF, (Argentina): Consejo Federal de Inversiones; 1993. Google Scholar
4. Alford G, Leach R, Smith SA. Operation and maintenance of extraction and injection wells at HTRW sites (EP 11101–27). St. Louis (MO): U.S. Army Corps of Engineers; 2000. Google Scholar
5. Smith SA. Field evaluation of emergency well disinfection for contamination events. Washington (DC): NGWA for U.S. Federal Emergency Management Agency; Westerville (OH): National Ground Water Association; 2002. Google Scholar
6. Smith SA, Hosler DM. Current research in dam drain clogging and its prevention. In: Proc. Dam Safety –06, 23rd Annual Conference. Lexington (KY): Association of State Dam Safety Officials; 2006. Google Scholar
7. Droycon Bioconcepts, Inc. Biological activity reaction test user’s manual; 2021 [accessed 2021 Dec]. http://www.dbi.ca/BARTs/Docs/Manual.pdf. Google Scholar
8. Cullimore DR. Practical manual of ground water microbiology, Droycon Bioconcepts, Inc.; 2008 [accessed 2021 Dec]. http://www.dbi.ca/Books/PDFs/PMGM.pdf. Google Scholar
9. Cullimore DR, McCann AE. The identification, cultivation and control of iron bacteria in ground water. In: Skinner FA, Shewan JM, eds. Aquatic microbiology. New York (NY): Academic Press; 1977. Google Scholar
10. MAG Microbiología. [accessed 22 Feb 22]. http://www.laboratoriomag.com.ar/sitio2/index.php Google Scholar
11. Emerson D, Floyd MM. Enrichment and isolation of iron-oxidizing bacteria at neutral pH. Methods Enzymol. 2005;397:112123. Google Scholar
12. Hallbreck EL, Pederson K. The biology of Gallionella. In: Cullimore DR, ed. Proc. International Symposium on Biofouled Aquifers: Prevention and Restoration. Denver (CO): American Water Works Association; 1986. Google Scholar
13. Starr MP, Stolp H, Truper HG, Balows A, Schlege HC. The prokaryotes. A handbook on habitats, isolation and identification of bacteria, Vol. 1. New York (NY): Springer-Verlag; 1981. Google Scholar
14. Staley JT, Bryant MP, Pfennig N, Holt JG, eds. Bergey’s manual of systematic bacteriology, Vol. 3. Baltimore (MD): Williams & Wilkins; 1989. Google Scholar
15. Armbruster EH. Improved technique for isolation and identification of Sphaerotilus. Appl Microbiol. 1969;17(2):320321. Google Scholar
16. Farquhar GJ, Boyle WC. Identification of filamentous microorganisms in activated sludge. J Water Pollut Control Fed. 1971;43(4):604622. Google Scholar
17. Van Veen WL. Bacteriology of activated sludge, in particular the filamentous bacteria. Antonie Leeuwenhoek (Holland) 1973;39(1):189205. Google Scholar
18. Dondero NC, Philips RA, Heukelekian H. Isolation and preservation of cultures of Sphaerotilus. Appl Microbiol. 1961;9(3):219227. Google Scholar
19. Mulder EG, VanVeen WL. Investigations on the Sphaerotilus-Leptothrix group. Antonie Leeuwenhoek (Holland) 1963;29(1):121153. Google Scholar
20. Ghiorse WC. Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol. 1984;38(1):515550. Google Scholar
21. Unz RF, Lundgren DG. A comparative nutritional study of three chemoautotrophic bacteria: Ferrobacillus ferrooxidans, Thiobacillus ferrooxidans, and Thiobacillus thiooxidans. Soil Sci. 1961;92(5):302313. Google Scholar
22. McGoran CJM, Duncan DW, Walden CC. Growth of Thiobacillus ferrooxidans on various substrates. Can J Microbiol. 1969;15(1):135138. Google Scholar
23. Silverman MP, Lundgren DG. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol. 1959;77(5):642647. Google Scholar
24. Kucera S, Wolfe RS. A selective enrichment method for Gallionella ferruginea. J Bacteriol. 1957;74(3):344349. Google Scholar
25. Wolfe RS. Cultivation, morphology, and classification of the iron bacteria. J Amer Water Works Assoc. 1958;50(9):12411249. Google Scholar
26. Nunley JW, Krieg NR. Isolation of Gallionella ferruginea by use of formalin. Can J Microbiol. 1968;14(4):385389. Google Scholar
27. Walsh F, Mitchell R. A pH-dependent succession of iron bacteria. Environ Sci Technol. 1972;6(9):809812. Google Scholar
28. Clark FM, Scott RM, Bone E. Heterotrophic, iron-precipitating bacteria. J Amer Water Works Assoc. 1967;59(8):10361042. Google Scholar
29. Lewis RF. Control of sulfate-reducing bacteria. J Amer Water Works Assoc. 1965;57(8):10111016. Google Scholar
30. Iverson WP. Growth of Desulfovibrio on the surface of agar media. Appl Microbiol. 1966;14(4):529534. Google Scholar
31. Lechevalier HA, Pramer D. The microbes, 1st ed. J.B. Philadelphia (PA): Lippincott Co.; 1970. Google Scholar
32. Mara DD, Williams DJA. The evaluation of media used to enumerate sulphate reducing bacteria. J Appl Bacteriol. 1970;33(3):543552. Google Scholar
33. Kreig NR, Holt JG. Bergey’s manual of systematic bacteriology, Vol. 1. Baltimore (MD): Williams & Wilkins; 1986. Google Scholar
34. Pfennig N. Photosynthetic bacteria. Ann Rev Microbiol. 1967;21(1):285324. Google Scholar
35. Hutchinson M, Johnstone KI, White D. The taxonomy of certain thiobacilli. J Gen Microbiol. 1965;41(3):357366. Google Scholar
36. Hutchinson M, Johnstone KI, White D. Taxonomy of the acidophilic thiobacilli. J Gen Microbiol. 1966;44(3):373381. Google Scholar
37. Atlas R. Handbook of microbiological media, 3rd ed. Boca Raton (FL): CRC Press; 2004. Google Scholar
38. Starkey RL. Formation of sulfide by some sulfur bacteria. J Bacteriol. 1937;33(5):545571. Google Scholar
39. Lackey JB, Lackey EW, Morgan GB. Taxonomy and ecology of the sulfur bacteria (Engineering Progress, University of Florida, Bulletin Series 119). Gainesville (FL); 1965. Google Scholar
40. Nelson DC, Wirsen CO, Jannasch HW. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol. 1989;55(11):29092917. Google Scholar
41. Nelson DC, Waterbury JB, Jannasch HW. Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch Microbiol. 1982;133(3):172177. Google Scholar
42. Strohl WR, Larkin JM. Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Appl Environ Microbiol. 1978;36(5):755770. Google Scholar
43. Larkin JM. Isolation of Thiothrix in pure culture and observation of a filamentous epiphyte on Thiothrix. Curr Microbiol. 1980;4(3):155158. Google Scholar
44. Larkin JM, Shinabarger DL. Characterization of Thiothrix nivea. Int J System Bacteriol. 1983;33(4):841846. Google Scholar
45. Eikelboom DH. Filamentous organisms observed in activated sludge. Water Res. 1975;9(4):365388. Google Scholar
46. Williams TM, Unz RF. Isolation and characterization of filamentous bacteria present in bulking activated sludge. Appl Microbiol Biotechnol. 1985;22(4):273282. Google Scholar
47. Williams TM, Unz RF. Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa, and Eikelboom type 021N strains. Appl Environ Microbiol. 1985;49(4):887898. Google Scholar
1. Kleinmann RPL, Crerar DA, Pacelli RR. Biogeochemistry of acid mine drainage and a method to control acid formation. Mining Eng. 1981;33(3):300305. Google Scholar
2. Dugan PR. Bacterial ecology of strip mine areas and its relationship to production of acidic mine drainage. Ohio J Sci. 1975;75(6):266279. Google Scholar
3. Harrison AP. Genus Acidiphilium. In: Staley JT, Bryant MP, Pfenning N, Holt JG, eds. Bergey’s manual of systematic bacteriology, Vol. 3. Baltimore (MD): Williams & Wilkins; 1989, p. 1863. Google Scholar
4. Wakao N, Mishina M, Sakurai Y, Shiota H. Bacterial pyrite oxidation. I. The effect of pure and mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans on release of iron. J Gen Appl Microbiol. 1982;28(4):331343. Google Scholar
5. Robertson LA, Kuenen JG. The colorless sulfur bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH, eds. The procaryotes, Vol. I. New York (NY): Springer-Verlag; 1992, p. 385. Google Scholar
6. Kuenen JG, Robertson LA, Tuovinen OH. The genera Thiobacillus, Thiomicrospira, and Thiosphaera. In: Balows A, Truper HG, Dworkin M, Harder W, and Scheifer KH, eds. The procaryotes, Vol. III. New York (NY): Springer-Verlag; 1992, p. 2638. Google Scholar
7. Karavaiko GI. Microorganisms and their significance for biogenotechnology of metals. In: Biotechnology of metals manual. Moscow: Centre for International Projects GKNT; 1988. Google Scholar
8. Kelly DP, Harrison AP, Jr. Genus Thiobacillus. In: Staley JT, Bryant MP, Pfenning N, Holt JG, eds. Bergey’s manual of systematic bacteriology, Vol. 3. Baltimore (MD): Williams & Wilkins; 1989, p. 1842. Google Scholar
9. Segerer A, Stetter KO. Genus Sulfolobus. In: Staley JT, Bryant MP, Pfenning N, Holt JG, eds. Bergey’s manual of systematic bacteriology, Vol. 3. Baltimore (MD): Williams & Wilkins; 1989, p. 2250. Google Scholar
10. Garcia O, Jr, Mukai JK, Andrade CB. Growth of Thiobacillus ferrooxidans on solid medium: effect of surface-active agents on colony formation. J Gen Appl Microbiol. 1992;38(3):279282. Google Scholar
11. Segerer AH, Stetter KO. The order Sulfolobales. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH, eds. The procaryotes, Vol. I. New York (NY): Springer-Verlag; 1992, p. 684. Google Scholar
12. Silverman MP, Lundgren DG. Studies on the growth of Thiobacillus ferrooxidans. I. An improved medium and harvesting process for securing high cell yields. J Bacteriol. 1959;77(5):642647. Google Scholar
13. Visca P, Bianchi E, Polidoro M, Buonfiglio V, Valenti P, Orsi N. A new solid medium for isolating and enumerating Thiobacillus ferrooxidans. J Gen Appl Microbiol. 1989;35(2):7181. Google Scholar
14. Manning HL. New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage. Appl Microbiol. 1975;30(6):10101016. Google Scholar
15. Guay R, Silver M. Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can J Microbiol. 1975;21(3):281288. Google Scholar
16. Norris PR, Kelly DP. Toxic metals in leaching systems. In: Murr LE, Torma AE, Brierly JA. eds. Metallurgical applications of bacterial leaching and related microbiological phenomena. New York (NY): Academic Press; 1978, p. 83. Google Scholar
17. Starkey RL. Concerning the physiology of Thiobacillus thiooxidans, an autotrophic bacterium oxidizing sulfur under acid conditions. J Bacteriol. 1925;10(2):135163. Google Scholar
18. Brock TD, Brock KM, Belly RT, Weiss RL. Sulfolobus: a new genus of sulfur-oxidizing bacteria at low pH and high temperature. Arch Mikrobiol. 1972;84(1):5468. Google Scholar
19. Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A, Ho T, Yamasato K, Shoda M. Sulfolobus hakonensis sp. nov, a novel species of acidothermophilic arachaeon. Int J Systematic Bacteriol. 1996;46(2):377382. Google Scholar
20. Karavaiko GI. Methods of isolation, evaluation and studying of microorganisms. In: Biotechnology of metals manual. Moscow: Centre for International Projects GKNT; 1988, p. 47. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 9240 iron and sulfur bacteria In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.198

SHARE

FROM THE DISCUSSION FORUM: