The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Palmer CM. A composite rating of algae tolerating organic pollution. J Phycol. 1969;5(1):7882. Google Scholar
2. Palmer CM. The effect of pollution on river algae. Bull NY Acad Sci. 1963;108(2):389395. Google Scholar
3. Rawson DS. Algal indicators of trophic lake types. Limnol Oceanogr. 1956;1(1):1825. Google Scholar
4. Smol JP. Pollution of lakes and rivers: a paleoenvironmental perspective. 2nd ed. New York (NY): Blackwell Publishing; 2008. Google Scholar
5. Gannon JE, Stemberger RS. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans Amer Microsc Soc. 1978;97(1):1635. Google Scholar
6. Tomas CR, ed. Identifying marine phytoplankton. San Diego (CA): Academic Press, Harcourt Brace & Co.; 1997. Google Scholar
7. Platt T, Li WKW, eds. Photosynthetic picoplankton. Ottawa (Ont): Department of Fisheries and Oceans; 1986. (Canadian Bulletin of Fisheries and Aquatic Sciences 214). Google Scholar
8. Stevenson RJ, White KD. A comparison of natural and human determinants of phytoplankton communities in the Kentucky River Basin, USA. Hydrobiologia. 1995;297(3):201216. Google Scholar
9. Lange-Bertalot, H. Pollution tolerance of diatoms as criterion for water quality estimation. Nova Hedwigia 1979;64:285304. Google Scholar
10. Dixit SS, & Smol J.P. Diatoms as indicators in environmental monitoring and assessment program-surface waters (EMAP-SW). Environ. Monitor. Assess. 1994;31:275–. Google Scholar
11. Smol JP, Stoermer, EF, eds. The Diatoms: applications for the environmental and earth sciences. 2nd Ed. Cambridge (UK): Cambridge University Press; 2010. Google Scholar
12. Porter SD, Cuffney TF, Gurtz ME, Meador MR. Methods for collecting algae as part of the National Water-Quality Assessment Program. USGS Open-File Report 93-409. Raleigh (NC): U.S. Geological Survey; 1993. Google Scholar
13. Clark SC, Price ML, Flugum J, Roberson R. Groundwater under the direct influence of surface water: it is not always black or white. In: Proceedings of Water Quality Technology Conference; 1993 Nov. 7–11; Miami, FL. Denver (CO): American Water Works Association; 1993, pp. 703. Google Scholar
14. Clancy JL. Interpretation of microscopic particulate analysis data—A water quality approach. In: Proceedings of the Water Quality Technology Conference; 1992 June 25–28; Toronto, Canada. Denver (CO): American Water Works Association; 1992, pp. 1831. Google Scholar
15. U.S. Environmental Protection Agency. Microscopic particulate analysis (MPA) for filtration plant optimization; EPA 910/R-96-001. Seattle (WA): U.S. Environmental Protection Agency; 1996. Google Scholar
16. U.S. Environmental Protection Agency. Consensus method for determining groundwaters under the direct influence of surface water using microscopic particulate analysis (MPA); EPA 910/9-92-029. Port Orchard (WA): U.S. Environmental Protection Agency; 1992. Google Scholar
17. Hancock CM, Ward JV, Hancock KW, Klonicki PT, Sturbaum GD. Assessing plant performance using MPA. J Amer Water Works Assoc. 1996;88(12):2434. Google Scholar
18. Taylor WD, Losee RF, Torobin M, Izaguirre G, Sass D, Khiari D, Atasi K. Early warning and management of surface water taste-and-odor events. Denver (CO): AWWA Research Foundation; 2006. Google Scholar
19. Carmichael W, ed. The Water Environment: Algal toxins and health. New York (NY): Plenum Press; 1981. Google Scholar
20. Hudnell HK, ed. Cyanobacterial harmful algal blooms: state of the science and research needs. New York (NY): Springer, 2008. Google Scholar
21. Huisman J, Matthijs HCP, Visser PM, eds. Harmful cyanobacteria. The Netherlands: Springer, Dordrecht; 2005. Google Scholar
22. Hallegraeff GM. Aquaculturists’ guide to harmful Australian microalgae. Hobart, Tasmania: Fishing Industry Training Board of Tasmania, Australia; 2002. Google Scholar
23. Watanabe MF, Harada K, Carmichael WW, Fujiki H, eds. Toxic microcystis. Boca Raton (FL): CRC Press; 1996. Google Scholar
24. Hallegraeff GM, Anderson DM, Cembella AD, eds. Manual of harmful marine microalgae. Paris: Intergovernmental Oceanographic Commission, UNESCO; 2003. Google Scholar
25. Hallegraeff GM. A review of harmful algal blooms and their apparent global increase. Phycologia. 1993;32(2):7999. Google Scholar
26. Chorus I, ed. Cyanotoxins: Occurrence, causes and consequences. Berlin: Springer; 2001. Google Scholar
27. Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ. Eutrophication of US freshwaters: analysis of potential economic damages. Environ Sci Technol. 2009;43(1):1219. Google Scholar
28. Carmichael WW. The cyanotoxins. Adv Botanical Res. 1997;27:211256. Google Scholar
29. Falconer IR, ed. Algal toxins in seafood and drinking water. San Diego (CA): Academic Press, Harcourt Brace & Co.; 1993. Google Scholar
30. Chorus I, Bartram J. Toxic cyanobacteria in water. Boca Raton (FL): CRC Press; 1999. Google Scholar
31. Westrick JA. Everything a manager should know about algal toxins but was afraid to ask. J Amer Water Works Assoc. 2003;95(9):26. Google Scholar
32. Falconer IR. Cyanobacterial toxins of drinking water supplies: Cylindrospermopsins and microcystins. Boca Raton (FL): CRC Press; 2004. Google Scholar
33. Graham JL, Loftin KA, Ziegler AC, Meyer MT. Cyanobacteria in lakes and reservoirs—toxin and taste-and-odor sampling guidelines. In: U.S. Geological Survey. Techniques of water-resources investigations, 09-A7.5 (Ver. 1.0); 2008. https://doi.org/10.3133/twri09A7.5 [accessed 2020 August 05]. Google Scholar
34. Erdner DL, Dyble J, Brand LE, Parker M, Stevens RC, Moore SK, LeFebvre K, Bienfang P, Anderson DM, Bidigare RR, et al. Proceedings of Centers for Oceans and Human Health: A unified approach to the challenge of harmful algal blooms. Environ Health. 2008;7(Suppl 2):S2. Google Scholar
35. Bienfang PK, Parsons ML, Bidigare RR, Laws EA, Moeller PDR. Ciguatera fish poisoning: A synopsis from ecology to toxicity. In: Walsh PJ, Smith SL, Fleming LE, Solo-Gabriele HM, Gerwick WH, eds. Oceans and human health: Risks and remedies from the seas, New York (NY): Elsevier; 2008, pp. 257. Google Scholar
1. Graham JL, Jones JR. Microcystin distribution in physical size class separations of natural phytoplankton communities. Lake Reservoir Management. 2007;23(2):161168. Google Scholar
2. Tillmanns AR, Pick FR, Aranda-Rodriguez R. Sampling and analysis of microcystins: implications for the development of standardized methods. Environ Toxicol. 2007;22(2):132143. Google Scholar
3. Graham JL, Jones JR. Microcystin distribution in physical size class separations of natural plankton communities. Lake Reservoir Mgmt. 2007;23(2):161168. Google Scholar
4. Vollenweider RA. A Manual on methods for measuring primary production in aquatic environments. Oxford (UK): Blackwell Scientific Publications; 1969. (International Biological Programme, Handbook No. 12) Google Scholar
5. Edmondson WT, ed. Ward and Whipple’s: Freshwater biology, 2nd ed. New York (NY): John Wiley & Sons; 1959. Google Scholar
6. Exton RJ, Houghton WM, Esaias W, Haas LW, Hayward D. Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stable cyanobacteria. Limnol Oceanog. 1983;28(6):12251231. Google Scholar
7. Graham JL, Loftin KA, Ziegler AC, Meyer MT. Cyanobacteria in lakes and reservoirs—toxin and taste-and-odor sampling guidelines (ver. 1.0): In: USGS National Field Manual for the Collection of Water-Quality Data.; U.S. Geological Survey; Chapter A7, section 7.5 (Technique of Water-Resources Investigations 09-A7.5) [published September 2008; accessed 05 December 2021]. http://pubs.water.usgs.gov/twri9A/ Google Scholar
8. Strickland JDH, Parsons TR. A Practical handbook of seawater analysis; bulletin 167. 2nd ed. Ottawa (Ont): Fisheries Research Board of Canada; 1968. Google Scholar
9. Dussart BM. Les differentes categories de plancton [French]. Hydrobiologia. 1965;26:7274. Google Scholar
10. Mortimer CH. The exchange of dissolved substances between mud and water in lakes. J Ecol. 1942;30(1):147201. Google Scholar
11. Chorus I, Welker M, eds. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. 2nd ed. Boca Raton (FL): CRC Press, on behalf of the World Health Organization; 2021. Google Scholar
12. Utermohl H. 1958. Zur Vervollkommung der quantitativen phytoplankton; 1958. German. (Methodik Mitt Int Ver Limnol. No. 9.) Google Scholar
13. Weber CI. The preservation of phytoplankton grab samples. Trans Amer Microsc Soc. 1968;87(1):7081. Google Scholar
14. Paerl HW. 1984. An evaluation of freeze fixation as a phytoplankton preservation method for microautoradiography. Limnol Oceanog. 29(2):417426. Google Scholar
15. Silver MW, Davoll PJ. Loss of 14C activity after chemical fixation of phytoplankton: Error source for autoradiography and other productivity measurements. Limnol Oceanog. 1978;23(2):362368. Google Scholar
16. Dinh QT, Munoz G, Simon DF, Vo Duy S, Husk B, Sauvé S. Stability issues of microcystins, anabaenopeptins, anatoxins, and cylindrospermopsin during short-term and long-term storage of surface water and drinking water samples. Harmful Algae, 2021;101:101955. https://doi.org/10.1016/j.hal.2020.101955 Google Scholar
17. Campisano R, Hall K, Griggs J, Willison S, Reimer S, Mash H, Magnuson M, Boczek L, Rhodes E. Selected analytical methods for environmental remediation and recovery (SAM). EPA/600/R-17/356. Washington DC: U.S. Environmental Protection Agency, Washington DC; 2017. Google Scholar
18. Chorus I, Welker M, eds. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. 2nd ed. Boca Raton (FL): CRC Press, on behalf of the World Health Organization; 2021, pp. 752. Google Scholar
19. Welker M, Chorus I, Fastner J, Khan S, Haque MM, Islam S, Khan NH. Microcystins (cyanobacterial toxins) in surface waters of rural Bangladesh: pilot study. J Water Health. 2005;3(4):325337. Google Scholar
20. Juday C. 1916. Limnological apparatus. Trans Wis Acad Sci. 18:566592. Google Scholar
21. Schindler DW. Two useful devices for vertical plankton and water sampling. J Fish Res. Board Can. 1969;26(7):19481955. Google Scholar
22. Schwoerbel J. Methods of hydrobiology. Toronto (Ont): Pergamon Press; 1970. Google Scholar
23. Jacobs F, Grant GC. Guidelines for zooplankton sampling in quantitative baseline and monitoring programs. Special Scientific Report No. 83. Virginia Institute of Marine Science, College of William and Mary; 1978. Google Scholar
24. Gannon JE. Towards improving the use of zooplankton in water quality surveillance of the St. Lawrence Great Lakes. Can Tech Rep Fish Aquat Sci. 1980;976:87109. Google Scholar
25. Evans MS, Sell DW. Mesh size and collection characteristics of 50-cm diameter conical plankton nets. Hydrobiologia. 1985;122(2):97104. Google Scholar
26. Pennak RW. Quantitative zooplankton sampling in littoral vegetation areas. Limnol Oceanog. 1962;7(4):487489. Google Scholar
27. Black AR, Dodson SI. Ethanol: a better preservation technique for Daphnia. Limnol Oceanog Methods. 2003;1(1):4550. Google Scholar
28. Haney JF, Hall DJ. Sugar-coated Daphnia: A preservation technique for Cladocera. Limnol Oceanog. 1973;18(2):331333. Google Scholar
29. Coats DW, Heinbokel JF. A study of reproduction and other life cycle phenomena in plankton protists using an acridine orange fluorescence technique. Mar Biol. 1982;67(1):7179. Google Scholar
30. Gannon JE, Gannon SA. Observations on the narcotization of crustacean zooplankton. 31. Crustaceana. 1975;28(2):220222. Google Scholar
31. Steedman HF. Narcotizing agents and methods. In: SCOR, Working Group on Zooplankton Laboratory Methods. Zooplankton fixation and preservation. Paris: United Nations Educational, Scientific & Cultural Organization; 1976. (Monographs on Oceanographic Methodology, No. 4). Google Scholar
1. Furet JE, Benson-Evans K. An evaluation of the time required to obtain complete sedimentation of fixed algal particles prior to enumeration. Brit Phycol J. 1982;17(3):253258. Google Scholar
2. McNabb CD. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnol Oceanogr. 1960;5(1):5761. Google Scholar
3. Hewes CD, Holm-Hansen O. A method for recovering nanoplankton from filters for identification with the microscope: The filter-transfer-freeze (FTF) technique. Limnol Oceanogr. 1983;28(2):389394. Google Scholar
4. Hewes CD, Reid FMH, Holm-Hansen O. The quantitative analysis of nanoplankton: a study of methods. J Plankton Res. 1984;6(4):601613. Google Scholar
5. MacIsaac EA, Stockner JG. Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ, eds. Handbook of methods in aquatic microbial ecology. Boca Raton (FL): CRC Press; 2018. Google Scholar
6. Caron DA. Technique for enumeration of heterotrophic and phototrophic nanoplankton using epifluorescence microscopy and comparison with other procedures. Appl Environ Microbiol. 1983;46(2):491498. Google Scholar
7. Marshall HG. Autotrophic picoplankton: Their presence and significance in marine and freshwater ecosystems. Virginia J Sci. 2002;53(1):1333. Google Scholar
8. Likens GE, Gilbert JJ. Notes on quantitative sampling of natural populations of planktonic rotifers. Limnol Oceanogr. 1970;15(5):816820. Google Scholar
1. Vollenweider RA. A Manual on methods for measuring primary production in aquatic environments. Oxford (UK): Blackwell Scientific Publications; 1969. (International Biological Programme, Handbook No. 12) Google Scholar
2. Crumpton WG. A simple and reliable method for making permanent mounts of phytoplankton for light and fluorescence microscopy. Limnol Oceanogr. 1987;32(5):11541159. Google Scholar
3. St. Amand A, Carpenter SR. Plankton vertical structure. In: Carpenter SR, Kitchell JF, eds. The Trophic cascade in lakes. Cambridge (UK): Cambridge University Press, 1993. Google Scholar
4. Sanford GR, Sands A, Goldman CR. A settle-freeze method for concentrating phytoplankton in quantitative studies. Limnol Oceanogr. 1962;14(5):790794. Google Scholar
5. Crumpton WG, Wetzel RG. A method for preparing permanent mounts of phytoplankton for critical microscopy and cell counting. Limnol Oceanogr. 1981;26(5):976980. Google Scholar
6. Patrick R, Reimer CW. The Diatoms of the United States. Philadelphia Academy of Natural Sciences; 1966, vol. 1, no. 13. (Monographs of the Academy of Natural Sciences of Philadelphia). Google Scholar
7. Barbour MT, Gerritsen J, Snyder BD, Stribling JB. Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish, 2nd ed.; EPA 841-B-99-002. Washington DC: Office of Water, U.S. Environmental Protection Agency; 1999. Google Scholar
8. Hohn MH, Hellerman J. The taxonomy and structure of diatom populations from three eastern North American rivers using three sampling methods. Trans Amer Microsc Soc. 1963;82(12):250329. Google Scholar
9. Small EB, Lynn DH. Phylum Ciliophora Doflein, 1901. In: Lee JJK, Leedale GF, Bradbury PC, eds. The illustrated guide to the protozoa. Oxford (UK): Blackwell Publishing; 2000. Google Scholar
1. Siver PA, Hinsch J. The use of interference reflection contrast in the examination of diatom valves. J Phycol. 2001;36(3):616620. Google Scholar
2. Wetzel RG, Likens GE. Limnological analyses, 3rd ed. New York (NY): Springer-Verlag: 2000. Google Scholar
3. Lund JWG, Kipling C, Lecren ED. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia. 1958;11(2):143170. Google Scholar
4. Sicko-Goad L, Stoermer EF. The need for uniform terminology concerning phytoplankton cell size fractions and examples of picoplankton from the Laurentian Great Lakes. J Great Lakes Res. 1984;10(1):9093. Google Scholar
5. Hasle G. The inverted microscope method. In: Sournia A., ed. Phytoplankton manual. Paris: United Nations Educational, Scientific and Cultural Organization; 1978. (Monographs on Oceanographic Methodology, No. 6). Google Scholar
6. Reynolds CS, Jaworski GHM. Enumeration of natural Microcystis populations. Brit Phycol J. 1978;13(3):269277. Google Scholar
7. Davis PG, Sieburth JM. Differentiation of phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescence microscopy. Ann Inst Oceanogr. 1982;58(suppl):249259. Google Scholar
8. Caron DA. Techniques for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl Environ. Microbiol. 1983;46(2):491498. Google Scholar
9. Sherr EB, Sherr BJ. Double-staining epifluorescence techniques to assess frequency of dividing cells and bacteriovory in natural populations of heterotrophic microprotozoa. Appl Environ Microbiol. 1983;46(6):13881393. Google Scholar
10. Jackson HW, Williams LG. Calibration and use of certain plankton counting equipment. Trans Amer Microsc Soc. 1962;81(1):96103. Google Scholar
1. Ingram WM, Palmer CM. Simplified procedures for collecting, examining, and recording plankton in water. J Amer Water Works Assoc. 1952;44(7):617624. Google Scholar
2. Venrick EL. How many cells to count. In: Sournia A, ed. Phytoplankton manual. Paris: United Nations Educational, Scientific and Cultural Organization; 1978. (Monographs on Oceanographic Methodology, No. 6). Google Scholar
3. Palmer CM, Maloney TE. A New counting slide for nanoplankton; Special Publication No. 21. Waco: American Society for Limnology & Oceanography; 1954. Google Scholar
4. Sournia A, ed. Phytoplankton manual. Paris: United Nations Educational, Scientific and Cultural Organization; 1978. (Monographs on Oceanographic Methodology, No. 6). Google Scholar
5. Lackey JB. The manipulation and counting of river plankton and changes in some organisms due to formalin preservation. Pub Health Rep. 1938;53(47):20802093. Google Scholar
6. Owen Jr BB, Afzal M, Cody WR. Staining preparations for phytoplankton and periphyton. Brit Phycol J. 1978;13(2):155160. Google Scholar
1. Longhurst AR, Seibert DLR. Skill in the use of Folsom’s plankton sample splitter. Limnol Oceanogr. 1967;12(2):334335. Google Scholar
2. Alden III RW, Dahiya RC, Young Jr RJ. A method for the enumeration of zooplankton samples. J Exp Mar Biol Ecol. 1982;59(2-3):185206. Google Scholar
3. Gannon JE. Two counting cells for the enumeration of zooplankton micro-crustacea. Trans Amer Microsc Soc. 1971;90(4):486490. Google Scholar
4. Dodson AN, Thomas WH. Concentrating plankton in gentle fashion. Limnol Oceanogr. 1964;9(3):455456. Google Scholar
1. Holm-Hansen O, Booth CR. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol Oceanogr. 1966;11(4):510519. Google Scholar
2. Sutcliffe Jr. WH, Sharp J. Measurement of deoxyribonucleic acid in the ocean and its ecological significance. Limnol Oceanogr. 1968;13(3):507514. Google Scholar
3. Holm-Hansen O. Determination of microbial biomass in ocean profiles. Limnol Oceanogr. 1969;14(5):740747. Google Scholar
4. Paerl HW, Tilzer MM, Goldman CR. Chlorophyll a versus adenosine triphosphate as algal biomass indicators in lakes. J Phycol. 1976;12(2):242246. Google Scholar
5. Richards FA. The estimation and characterization of plankton populations by pigment analyses. J Mar Res. 1952;9(2):147172. Google Scholar
6. Kutkuiin JH. Notes on the precision of numerical and volumetric plankton estimates from small-sample concentrations. Limnol Oceanogr. 1958;3(1):6983. Google Scholar
7. Vollenweider RA. 1969. A Manual on methods for measuring primary production in aquatic environments. Oxford (UK): Blackwell Scientific Publications; 1969. (International Biological Programme, Handbook No. 12) Google Scholar
8. Smayda TJ. From phytoplankters to biomass. In: Sournia A. , ed. Phytoplankton manual. Paris: United Nations Educational, Scientific and Cultural Organization; 1978, No. 6. Google Scholar
9. Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35(2):403424. Google Scholar
10. Olrik K, Blomqvist P, Brettum P, Cronberg G, Eloranta P. Methods for quantitative assessment of phytoplankton in freshwaters, part I. Stockholm: Naturvårdsverket, 1998. Google Scholar
11. Jacobs F, Grant GC. Guidelines for zooplankton sampling in quantitative baseline and monitoring programs; EPA-600/3-78-026. Washington DC: U.S. Environmental Protection Agency; 1978. Google Scholar
12. Nelson DJ, Scott DC. Role of detritus in the productivity of a rock-outcrop community in a Piedmont stream. Limnol Oceanogr. 1962;7(3):396413. Google Scholar
13. Rudd JWM, Hamilton RD. Measurement of adenosine triphosphate (ATP) in two precambrian shield lakes of northwestern Ontario. J Fish Res Board Can. 1973;30(10):15371546. Google Scholar
14. Strickland JDH, Parsons TR. A Practical manual of sea water analysis. 2nd ed. Ottawa (Ont): Fisheries Research Board of Canada; 1968, Bulletin 167. Google Scholar
15. Weber CI. Recent developments in the measurement of the response of plankton and periphyton to changes in their environment. In: Glass G, ed. Bioassay techniques and environmental chemistry. Ann Arbor (MI): Ann Arbor Science Publishers; 1973. Google Scholar
1. Gundersen K. In-situ determination of primary production by means of the new incubator, ISIS. Helgolander wiss. Meeresunters. 1973;24:465475. Google Scholar
2. Burris RH, Eppling FJ, Wahlin HB, Wilson PW. Studies of biological nitrogen fixation with isotopic nitrogen. Proc Soil Sci Soc Amer. 1943;7:258262. Google Scholar
3. Neess JC, Dugdale RC, Dugdale VA, Goering JJ. Nitrogen metabolism in lakes, I. Measurement of nitrogen fixation with N15. Limnol Oceanogr. 1962;7(2):163169. Google Scholar
4. Stewart WDP, Fitzgerald GP, Burris RH. In situ studies on N2 fixation using the acetylene reduction technique. Proc Nat Acad Sci. 1967;58(5):20712078. Google Scholar
5. Stewart WDP, Fitzgerald GP, Burris RH. Acetylene reduction assay for determination of phosphorus availability in Wisconsin lakes. Proc Nat Acad Sci. 1970;66(4):11041111. Google Scholar
6. Goldman CR. Aquatic primary production. Amer Zoologist. 1968;8:3142. Google Scholar
7. Odum HT. Primary production measurements in eleven Florida springs and a marine turtle-grass community. Limnol Oceanogr. 1957;2(2):8597. Google Scholar
8. Beyers RJ, Odum HT. The use of carbon dioxide to construct pH curves for the measurement of productivity. Limnol Oceanogr. 1959;4(4):499502. Google Scholar
9. Gaarder T, Gran HH. Investigations of the production of plankton in the Oslo fjord. International Council for the Exploration of the Sea; 1927. (Conseil Permanent International Pour L’Exploration de la Mer Rapports et Proces-Verbaux Des Reunions, 42). Google Scholar
10. Steeman Neilsen E. 1952. The use of radioactive carbon (C14) for measuring organic production in the sea. ICES J Mar Sci. 1952;18(2):117140. Google Scholar
11. Williams PJL, Raine RCT, Bryan JR. Agreement between the 14C and oxygen methods of measuring phytoplankton production: Reassessment of the photosynthetic quotient. Oceanol Acta 1979;2(4):411416. Google Scholar
12. Davies JM, Williams PJL. Verification of 14C and O2 derived primary organic production using an enclosed system. J Plankton Res. 1984;6(3):457474. Google Scholar
13. Ryther JH. Photosynthesis in the ocean as a function of light intensity. Limnol Oceanogr. 1956;1(1):6170. Google Scholar
14. Fee EJ. A numerical model for the estimation of photosynthetic production, integrated over time and depth, in natural waters. Limnol Oceanogr. 1969;14(6):906911. Google Scholar
15. Steeman Neilsen E. Recent advances in measuring and understanding marine primary production. J Animal Ecol. 1964;33:119130. Google Scholar
16. Allen MB. Excretion of organic compounds by Chlamydomonas. Arch Mikrobiol. 1956;24:163168. Google Scholar
17. Fogg GE, Watt WD. The kinetics of release of extracellular products of photosynthesis by phytoplankton. In: Goldman CR, ed. Primary productivity in aquatic environments, Proceedings of an IBP PF Symposium in Pallanza, Italy, 1965 April 26. Berkeley (CA): University of California Press; 1965. Google Scholar
18. Wetzel RG. Necessity for decontamination of filters in C14 measured rates of photosynthesis in fresh waters. Ecology 1965;46(4):540542. Google Scholar
19. McAllister CD. Decontamination of filters in the C14 method of measuring marine photosynthesis. Limnol Oceanogr. 1961;6(4):447450. Google Scholar
20. Carpenter EJ, Lively JS. Review of estimates of algal growth using 14C tracer techniques. In: Falkowski PG, ed. Primary productivity in the sea. New York (NY): Springer US; 1980. (Brookhaven Symposia Biology, No. 31). Google Scholar
21. Strickland JDH, Parsons TR. A Practical manual of sea water analysis. 2nd ed. Ottawa (Ont): Fisheries Research Board of Canada; 1968, Bulletin 167. Google Scholar
22. Parsons TR, Maita Y, Lalli CM. A Manual of chemical and biological methods for seawater analysis. New York (NY): Pergamon Press; 1984. Google Scholar
23. Lasker R, Holmes RW. Variability in retention of marine phytoplankton by membrane filters. Nature. 1957;180:12951296. Google Scholar
24. Holmes RW, Anderson CG. Size fractionation of C14- labelled natural phytoplankton communities. In: Oppenheimer CH, ed. Symposium on marine microbiology. Springfield (IL): Charles C Thomas; 1963. Google Scholar
25. Arthur CR, Rigler FH. A possible source of error in the C14 method of measuring primary productivity. Limnol Oceanogr. 1967;12(1):121124. Google Scholar
26. Jitts HR, Scott BD. The determination of zero-thickness activity in Geiger counting of C14 solutions used in marine productivity studies. Limnol Oceanogr. 1961;6(2):116123. Google Scholar
27. Dye JF. The calculation of alkalinities and free carbon dioxide in water by the use of nomographs. J Amer Water Works Assoc. 1944;36(8):859900. Google Scholar
28. Moore EW. Graphic determination of carbon dioxide and the three forms of alkalinity. J Amer Water Works Assoc. 193(91);31:5166. Google Scholar
29. Park K, Hood DW, Odum HT. Diurnal pH variation in Texas bays and its application to primary production estimations. Publ Inst Mar Sci Univ Tex. 1958;5:4764. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 10200 plankton In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.207

SHARE

FROM THE DISCUSSION FORUM: