The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Roll H. Zur Terminologie des Periphytons. Arch Hydrobiol. 1939;35:39. Google Scholar
2. Young OW. A limnological investigation of periphyton in Douglas Lake, Michigan. Trans. Am Microsc Soc. 1945;64(1):120. Google Scholar
3. Sládečková A. Limnological investigation methods for the periphyton (“Aufwuchs”) community. Bot Rev. 1962;28(2):286350. Google Scholar
1. Sládečková A. Limnological investigation methods for the periphyton (“Aufwuchs”) community. Bot Rev. 1962;28(2):286350. Google Scholar
2. Gough SB, Woelkerling WJ. On the removal and quantification of algal aufwuchs from macrophyte hosts. Hydrobiologia. 1976;48(3):203207. Google Scholar
3. Booth WE. A method for removal of some epiphytic diatoms. Botanica Marina. 1981;24(11):603610. Google Scholar
4. Delbecque EJP. Periphyton on nymphaeids: an evaluation of methods and separation techniques. Hydrobiologia. 1985;124(1):8593. Google Scholar
5. Loeb SL. An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnol Oceanography. 1981;26:394399. Google Scholar
6. Sartory DP, Grobbelaar JU. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia. 1984;114(3):177187. Google Scholar
7. Jespersen AM, Christoffersen K. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol. 1987;109(3):445454. Google Scholar
Hohn MH. Artificial substratum for benthic diatoms—collection, analysis, and interpretation. In: Cummings KW, Tryon Jr CA, Hartman RT, eds. Organism-substratum relationships in streams; a symposium held at the Pymatuning Laboratory of Ecology, 16-17 July 1964. Special Publication, Vol. 4. Pittsburgh (PA): Pymatuning Laboratory Ecology, University of Pittsburgh; 1966, p. 87. Google Scholar
Kevern NR, Wilhm JL, Van Dyne GM. Use of artificial substrata to estimate the productivity of periphyton communities. Limnol Oceanogr. 1966;11(4):499502. Google Scholar
Arthur JW, Horning WB. The use of artificial substrata in pollution surveys. Amer Midland Natur. 1969;82(1):8389. Google Scholar
Tippett R. Artificial surfaces as a method of studying populations of benthic micro-algae in fresh water. Brit Phycol J. 1970;5(2):187199. Google Scholar
Ertl M. A quantitative method of sampling periphyton from rough substrates. Limnol Oceanogr. 1971;16(3):576577. Google Scholar
Anderson MA, Paulson SL. A simple and inexpensive woodfloat periphyton sampler. Progr Fish-Cult. 1972;34(4):225225. Google Scholar
Current and select bibliographies on benthic biology (annual publication). Society for Freshwater Science [accessed 2020 Oct 8]. https://freshwater-science.org/publications/bibliographies. Google Scholar
Marker AFH, Crowther CA, Gunn RJM. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Arch Hydrobiol Ergebn Limnol. 1980;14:5269. Google Scholar
Nerozzi A, Siver P. Periphytic community analysis in a small oligotrophic lake. Proc Penn Acad Sci. 1983;57(2):138142. Google Scholar
Wetzel R., ed. Periphyton of freshwater ecosystems. Proceedings of the First International Workshop on Periphyton of Freshwater ecosystems, Sweden, 14-17 Sept 1982. Developments in hydrobiology 17. The Hague, The Netherlands: Dr. W. Junk BV Publishers, 1983. Google Scholar
Hamilton PB, Duthie HC. Periphyton colonization of rock surfaces in a boreal forest stream studied by scanning electron microscopy and track autoradiography. J Phycol. 1984;20(4):525532. Google Scholar
Nielsen TS, Funk WH, Gibbons HL, Duffner RM. A comparison of periphyton growth on artificial and natural substrates in the Upper Spokane River. Northwest Sci. 1984;58(4):243248. Google Scholar
Pip E, Robinson GGC. A comparison of algal periphyton composition on eleven species of submerged macrophytes. Hydrobiol Bull. 1984;18:109118. Google Scholar
Poulin M, Berard-Therriault L, Cardinal A. Benthic diatoms from hard substrata of marine and brackish waters of Quebec Canada 3. Fragilarioideae, Fragilariales, Fragilariaceae. Nat Can. (Que). 1984;111:349. Google Scholar
Stevenson RJ. How currents on different sides of substrates in streams affect mechanisms of benthic algal accumulation. Int Rev ges Hydrobiol. 1984;69(2):241262. Google Scholar
Vymazal J. Short-term uptake of heavy metals by periphyton algae. Hydrobiologia 1984;119:171179. Google Scholar
Austin A, Deniseger J. Periphyton community changes along a heavy metals gradient in a long narrow lake. Environ Exper Bot. 1985;25(1):4152. Google Scholar
Flower RJ. An improved epilithon sampler and its evaluation in two acid lakes. Brit Phycol J. 1985;20(2):109115. Google Scholar
Lamberti GA, Resh VH. Comparability of introduced tiles and natural substrates for sampling lotic bacteria, algae and macroinvertebrates. Freshwater Biol. 1985;15(1):2130. Google Scholar
Piekarczyk R, McArdle E. Pioneer colonization and interaction of photosynthetic and heterotrophic microorganisms on an artificial substratum of polyurethane foam in E.J. Beck Lake, Illinois, USA. Trans Ill State Acad Sci. 1985;78:81. Google Scholar
Cattaneo A, Roberge G. Efficiency of a brush sampler to measure periphyton in streams and lakes. Can J Fish Aquat Sci. 1991;48(10):18771881. Google Scholar
Cattaneo A, Amireault MC. How artificial are artificial substrata for periphyton? J N Amer Benthol Soc. 1992;11(2):244256. Google Scholar
Stevenson RJ, Bothwell ML, Lowe RL, eds. Algal ecology: Freshwater benthic ecosystems. San Diego (CA): Academic Press; 1996. Google Scholar
Water Environment Research Literature Review. Substratum-associated microbiota. Alexandria (VA): Water Environment Federation; annual publication. Google Scholar
Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM, eds. Periphyton: ecology, exploitation, and management. Wallingford, UK: CABI Publishing; 2005. Google Scholar
1. Wetzel RG, Likens GE. Limnological Analyses, 3rd ed. New York (NY): Springer-Verlag; 2000. Google Scholar
2. Crumpton WG. A simple and reliable method for making permanent mounts of phytoplankton for light and fluorescence microscopy. Limnol Oceanogr. 1987;32(5):11541159. Google Scholar
3. Stevenson RJ. Procedures for mounting algae in a syrup medium. Trans Am Microsc Soc. 1984;103(3):320321. Google Scholar
4. Stevenson RJ, Lowe RL. Sampling and interpretation of algal patterns for water quality assessments. In Isom BG, ed. Rationale for sampling and interpretation of ecological data in the assessment of freshwater ecosystems, STP 894. West Conshohocken (PA): ASTM International; 1986, p. 118149. Google Scholar
5. Owen BB, Afzal M, Cody WR. Staining preparations for phytoplankton and periphyton. Brit Phycol J. 1978;13(2):155160. Google Scholar
6. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. Biovolume calculations for pelagic and benthic microalgae. J Phycol. 1999;35:403424. Google Scholar
7. Newcombe CL. A quantitative study of attachment materials in Sodon Lake, Michigan. Ecology. 1950;31(2):204215. Google Scholar
8. Nelson DJ, Scott DC. Role of detritus in the productivity of a rock-outcrop community in a piedmont stream. Limnol Oceanogr. 1962;7(3):396413. Google Scholar
9. Grzenda AR, Brehmer ML. A quantitative method for the collection and measurement of stream periphyton. Limnol Oceanogr. 1960;5(2):190194. Google Scholar
Eaton JW, Moss B. The estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr. 1966;11(4):584595. Google Scholar
Moss B. The chlorophyll a content of some benthic algal communities. Arch Hydrobiol. 1968;65:5162. Google Scholar
Crippen RR, Perrier JL. The use of neutral red and Evans blue for live-dead determinations of marine plankton. Stain Technol. 1974;49(2):97104. Google Scholar
Owen BB, Afzal M, Cody WR. Distinguishing between live and dead diatoms in periphyton communities. In: Weitzel RL, ed. Methods and measurements of periphyton communities: a review; STP 690. Philadelphia (PA): American Society for Testing and Materials; 1979. Google Scholar
Wetzel R., ed. Periphyton of freshwater ecosystems. Proceedings of the First International Workshop on Periphyton of Freshwater ecosystems, Sweden, 14-17 Sept 1982. Developments in hydrobiology 17. The Hague, The Netherlands: Dr. W. Junk BV Publishers, 1983. Google Scholar
Delbecque EJP. Periphyton on nymphaeids: An evaluation of methods and separation techniques. Hydrobiologia. 1985;124:8593. Google Scholar
Trees CC, Kennicutt MC, Brooks JM. Errors associated with the standard fluorimetric determination of chlorophylls and phaeopigments. Mar Chem. 1985;17(1):112. Google Scholar
Biggs BJF. Effects of sample storage and mechanical blending on the quantitative analysis of river periphyton. Freshwater Biol. 1987;18(2):197203. Google Scholar
Hauer R, Lamberti G, eds. 2006. Methods in stream ecology, 2nd ed. San Diego (CA): Academic Press; 2006. Google Scholar
1. Vollenweider RA, ed. A Manual on methods for measuring primary production in aquatic environments. IBP Handbook No. 12. Philadelphia (PA): F.A. Davis Co; 1969. Google Scholar
2. Sládeček V, Sládečkova A. Determination of periphyton production by means of the glass slide method. Hydrobiologia. 1964;23(1-2):125158. Google Scholar
3. King DL, Ball RC. A qualitative and quantitative measure of aufwuchs production. Trans Am Microsc Soc. 1966;82(2):232240. Google Scholar
4. Clark JR, Messenger DI, Dickson KL, Cairns J Jr. Extraction of ATP from aufwuchs communities. Limnol Oceanogr. 1978;23(5):10551059. Google Scholar
5. Wetzel RG. Primary productivity of periphyton. Nature. 1963;197:10261027. Google Scholar
6. Wetzel RG. A comparative study of the primary production of higher aquatic plants, periphyton, and phytoplankton in a large shallow lake. Int Rev ges Hydrobiol. 1964;49(1):161. Google Scholar
7. Kahn WE, Wetzel RG. Effects of microscale water level fluctuations and altered ultraviolet radiation on periphyton microflora. Microbial Ecol. 1999;38(3):253263. Google Scholar
8. Loeb SL. An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnol Oceanogr. 1981;26(2):394399. Google Scholar
9. Beer S, Stewart AJ, Wetzel RG. Measuring chlorophyll a and 14C-labeled photosynthate in aquatic angiosperms by use of a tissue solubilizer. Plant Physiol. 1982;69(1):5457. Google Scholar
10. Francoeur SN, Schaecher M, Neely RK, Kuehn KA. Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying Typha litter. Microbial Ecol. 2006;52(4):662669. Google Scholar
11. Odum HT. Primary production in flowing waters. Limnol Oceanogr. 1956;1(2):102117. Google Scholar
12. Allen HL. Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria or macrophytes in the littoral of a lake. Ecol Monogr. 1971;41(2):97127. Google Scholar
13. Hall CAS. Migration and metabolism in a temperate stream ecosystem. Ecology. 1972;53(4):585604. Google Scholar
14. Nixon SW, Oviatt CA. Ecology of a New England salt marsh. Ecol Monogr. 1973;43(4):463498. Google Scholar
15. McIntire CD, Garrison RL, Phinney HK, Warren CE. Primary production in laboratory streams. Limnol. Oceanogr. 1964;9(1):92102. Google Scholar
16. Thomas NA, O’Connell RL. A method for measuring primary production by stream benthos. Limnol Oceanogr. 1966;11(3):386392. Google Scholar
17. Copeland BJ, Duffer WR. Use of a clear plastic dome to measure gaseous diffusion rates in natural waters. Limnol Oceanogr. 1964;9(4):494499. Google Scholar
18. Tsivoglou EC, Neal LA. Tracer measurement of reaeration. III. Predicting the capacity of inland streams. J Water Pollut Control Fed. 1976;48(12):26692689. Google Scholar
19. Grant RS. Reaeration-coefficient measurements of 10 small streams in Wisconsin: with a section on the energy-dissipation model. Water Resources. Pub. 76-96. Madison (WI): U.S. Geological. Survey; 1976. Google Scholar
20. Odum HT, Hoskin CM. Comparative studies of the metabolism of marine water. In: Publications of the Institute of Marine Science. Port Aransas (TX): Institute of Marine Science, The University of Texas; 1958, Volume 5, p.1646. Google Scholar
21. Bott TL, Brock JT, Cushing CE, Gregory SV, King D, Petersen RC. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia. 1978;60(1):312. Google Scholar
22. Marzolf ER, Mulholland PJ, Steinman AD. Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci. 1994;51(7):15911599. Google Scholar
23. Young RG, Huryn AD. Comment: Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci. 1998;55(7):17841785. Google Scholar
Pomeroy LR. Algal productivity in salt marshes of Georgia. Limnol Oceanogr. 1959;4(4):386397. Google Scholar
Castenholz RW. An evaluation of a submerged glass method of estimating production of attached algae. Verh Int Ver Limnol. 1961;14:155159. Google Scholar
Whitford LA, Schumacher GJ. Effect of a current on respiration and mineral uptake in Spirogyra and Oedogonium. Ecology 1964;45(1):168170. Google Scholar
Duffer WR, Dorris TC. Primary productivity in a southern Great Plains stream. Limnol Oceanogr. 1966;11(2):143151. Google Scholar
McIntire CD. Some factors affecting respiration of periphyton communities in lotic environments. Ecology. 1966;47(6):918930. Google Scholar
Cushing CE. Periphyton productivity and radionuclide accumulation in the Columbia River, Washington, USA. Hydrobiologia.1967;29:125139. Google Scholar
Hansmann EW, Lane CB, Hall JD. A direct method of measuring benthic primary production in streams. Limnol Oceanogr. 1971;16(5):822826. Google Scholar
Schindler DW, Frost VE, Schmidt RV. Production of epilithiphyton in two lakes of the experimental lakes area, northwestern Ontario. J Fish Res Board Can. 1973;30(10):15111524. Google Scholar
Current and select bibliographies on benthic biology (annual publication). Society for Freshwater Science [accessed 2020 Oct 8]. https://freshwater-science.org/publications/bibliographies. Google Scholar
Wetzel RG, Likens GE. Limnological analyses, 3rd ed. New York (NY): Springer-Verlag; 2000. Google Scholar
1. Kolkwitz R. Oekologie der saprobien. Ver Wasser-, Boden, Lufthyg. Schriftenreihe (Berlin) 1950;4:1. Google Scholar
2. Liebmann H. Handbuch der Frischwasser und Abwasserbiologie. Munich (Germany): Bd. I. Oldenbourg; 1951. Google Scholar
3. Fjerdingstad E. Pollution of streams estimated by benthal phytomicroorganisms I. A saprobic system based on communities of organisms and ecological factors. Int Rev ges Hydrobiol. 1964;49(1):63131. Google Scholar
4. Fjerdingstad E. Taxonomy and saprobic valency of benthic phytomicroorganisms. Int Rev ges Hydrobiol 1965;50(4):475604. Google Scholar
5. Sládeček V. Water quality system. Verh Int Ver Limnol. 1966;16:809. Google Scholar
6. Sládeček, V. System of water quality from the biological point of view. Arch Hydrobiol Ergebn Limnol. 1973;7:1. Google Scholar
7. Sládeček V, Sládečková A. Revision of polysaprobic indicators. Verh Int Ver Limnol. 1998;26(3):12771280. Google Scholar
8. Butcher RW. Studies in the ecology of rivers: VI. The algal growth in certain highly calcareous streams. J Ecol. 1946;33(2):268283. Google Scholar
9. Shannon CE. 1948. A Mathematical theory of communication. The Bell System Technical J. Jul, Oct 1948;27:379423, 623656. Google Scholar
10. Simpson EH. Measurement of diversity. Nature. 1949;163:688. Google Scholar
11. Pinkham CFA, Pearson JG. Applications of a new coefficient of similarity to pollution surveys. J Water Pollut. Control Fed. 1976;48(4):717723. Google Scholar
12. Pantle R, Buck H. 1955. Die biologische üerwachung der Gewasser und der Darstellung der Ergebnisse. Gas-Wasserfach 96:604. Google Scholar
13. Kelly MG, Whitton BA. The trophic diatom index: A new index for monitoring eutrophication in rivers. J Appl Phycol. 1995;7(4):433444. Google Scholar
14. Kelly MG, Juggins S, Guthrie R, Pritchard S, Jamieson J, Rippey B, Hirst H, Yallop M. Assessment of ecological status in U.K. rivers using diatoms. Freshwat Biol. 2008;53(2):403422. Google Scholar
15. Patrick R, Hohn MH, Wallace JH, eds. A new method for determining the pattern of diatom flora. Philadelphia (PA): Academy of Natural Science; 1954 (Notulae Naturae, Vol. 259). Google Scholar
16. Patrick R. Use of algae, especially diatoms, in the assessment of water quality. In: Cairns J, Dickson KL, eds. Biological methods for the assessment of water quality; ASTM STP 528. Philadelphia (PA): ASTM; 1973, p. 7695. Google Scholar
17. Weber C. Recent developments in the measurement of the response of plankton and periphyton to changes in their environment. In: Glass G, ed. Bioassay techniques and environmental chemistry. Ann Arbor (MI): Ann Arbor Science Publ.; 1973. Google Scholar
18. Leland HV, Carter JL. Use of detrended correspondence analysis in evaluating factors controlling species composition of periphyton. In: Isom BG, ed. Rationale for sampling and interpretation of ecological data in the assessment of freshwater ecosystems; STP 894. Philadelphia (PA): ASTM; 1986, p. 101117. Google Scholar
19. Pan Y, Stevenson RJ. Gradient analysis of diatom assemblages in western Kentucky wetlands. J Phycol. 1996;32(2):222232. Google Scholar
20. Pan Y, Stevenson RJ, Hill BH, Herlihy AT, Collins GB. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. J N Am Benthol Soc. 1996;15(4):481495. Google Scholar
21. Stevenson RJ, Pan Y. Assessing environmental conditions in rivers and streams with diatoms. In: Stoermer EF, Smol JP, eds. The Diatoms: applications for the environmental and earth wciences. Cambridge (UK): Cambridge University Press; 1999, p. 1140. Google Scholar
22. Lowe RL, Pan Y. Benthic algal communities as biological monitors. In: Stevenson RJ, Bothwell ML, Lowe RL, eds. Algal ecology: freshwater benthic ecosystems. San Diego (CA): Academic Press; 2011, p. 705733. Google Scholar
23. Sládečková A, Sládeček V. Microbenthos of running water in water resources catchment basins. In: Bretschko G, Helešic J, eds. Advances in river bottom ecology. Leiden (The Netherlands): Backhuys Publishers; 1998, p. 207. Google Scholar
24. Sládečková A. Periphyton as indicator of the reservoir water quality III. Biomonitoring technique. Arch Hydrobiol Ergebn Limnol. 1990;33:775. Google Scholar
25. Sládečková, A. & Voláková. P. 1994. Periphyton assays in situ for the assessment of reservoir eutrophication and of the resulting water treatment problems. Arch Hydrobiol Ergebn Limnol. 40:275. Google Scholar
26. Sládečková, A. The role of periphyton in waste treatment technology. Verh Int Ver Limnol. 1994;25(3):19291932. Google Scholar
27. Sládečková A, Matulová D. Periphyton as bioeliminator. Verh Int Ver Limnol. 1998;26:1777. Google Scholar
Blum JL. The ecology of river algae. Bot Rev. 1956;22:291341. Google Scholar
Yount JL. Factors that control species numbers in Silver Springs, Florida. Limnol Oceanogr. 1956;1(4):286295. Google Scholar
Butcher RW. Biological assessment of river pollution. Proc Linnean Soc London 1959;170(2):159165. Google Scholar
Hohn MH. The use of diatom populations as a measure of water quality in selected areas of Galveston and Chocolate Bay, Texas. Publ Inst Mar Sci Univ Tex. 1959;5:206212. Google Scholar
Hohn MH. Determining the pattern of the diatom flora. J Water Pollut Control Fed. 1961;33(1):4853. Google Scholar
Patrick R. The structure of diatom communities under varying ecological conditions. Ann NY Acad Sci. 1963;108(2):359365. Google Scholar
Sládečková A, Sládeček V. Periphyton as indicator of the reservoir water quality. I. True-periphyton. Technol Water. 1964;7:507561. Google Scholar
Current and select bibliographies on benthic biology (annual publication). Society for Freshwater Science [accessed 2020 Oct 8]. https://freshwater-science.org/publications/bibliographies. Google Scholar
Schlichting HE Jr, Gearheart RA. Some effects of sewage effluent upon phyco-periphyton in Lake Murray, Oklahoma. Proc Okla Acad Sci. 1965;46:1924. Google Scholar
Taylor MP. Thermal effects on the periphyton community in the Green River. Chattanooga, (TN): Tennessee Valley Authority, Division of Health and Safety, Water Quality Br., Biol. Sect.; 1967. Google Scholar
Patrick R. The structure of diatom communities in similar ecological conditions. Amer Natur. 1968;102(924):173183. Google Scholar
Dickman M. A quantitative method for assessing the toxic effects of some water soluble substances, based on changes in periphyton community structure. Water Res. 1969;3(12):963972. Google Scholar
Besch WK, Ricard M, Cantin R. Benthic diatoms as indicators of mining pollution in the Northwest Miramichi River System, New Brunswick, Canada. Hydrobiology. 1972;57(1):3974. Google Scholar
Nusch EA. Ecological and systematic studies of the Peritricha (Protozoa, Ciliata) in the periphyton community of reservoirs and dammed rivers with different degrees of saprobity. Arch Hydrobiol. 1970;37:243. Google Scholar
Rose FL, McIntire CD. Accumulation of dieldrin by benthic algae in laboratory streams. Hydrobiologia. 1970;35:481493. Google Scholar
Whitton BA. Toxicity of zinc, copper and lead to Chlorophyta from flowing waters. Arch Mikrobiol. 1970;72:353360. Google Scholar
Burrows EM. Assessment of pollution effects by the use of algae. Proc Roy Soc Lond Ser B. 1971;177(1048):295306. Google Scholar
Patrick R. The effects of increasing light and temperature on the structure of diatom communities. Limnol Oceanogr. 1971;16(2):405421. Google Scholar
Archibald REM. Diversity of some South African diatom associations and its relation to water quality. Water Res. 1972;6(10):12291238. Google Scholar
Cairns Jr J, Lanza BR, Parker BC. Pollution-related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proc Acad Natur Sci Phil. 1972;124:79127. Google Scholar
Olson TA, Odlaug TO. Lake Superior periphyton in relation to water quality. Water Pollution Control Research Series, 18080 DEM 02/72. Prepared for the Office of Research and Monitoring. Minneapolis: University of Minnesota School Public Health; 1972. Google Scholar
Hansmann EW, Phinney HK. Effects of logging on periphyton in coastal streams of Oregon. Ecology. 1973;54(1):194199. Google Scholar
Ruthven JA, Cairns Jr J. Response of fresh-water protozoan artificial communities to metals. J Protozool. 1973;20(1):127135. Google Scholar
Current and select bibliographies on benthic biology (annual publication). Society for Freshwater Science [accessed 2020 Oct 8]. https://freshwater-science.org/publications/bibliographies. Google Scholar
Baxter RM. Environmental effects of dams and impoundments. Ann Rev Ecol Systematics. 1977;8:255283. Google Scholar
Sládečková, A. & Sládeček V. Periphyton as indicator of the reservoir water quality. II. Pseudoperiphyton. Arch Hydrobiol Ergebn Limnol. 1977;9:177191. Google Scholar
Weitzel RL, ed. Methods of measurement of periphyton communities: A Review; ASTM STP 690. Philadelphia (PA): American Society of Testing and Materials; 1979. Google Scholar
Wetzel R, ed. Periphyton of freshwater ecosystems. Proceedings of the First International Workshop on Periphyton of Freshwater Ecosystems. Sweden; 1982 14–17 Sept. Developments in hydrobiology 17. The Hague, The Netherlands: Dr. W. Junk BV Publishers, 1983. Google Scholar
Kosinski RJ. The effect of terrestrial herbicides on the community structure of stream periphyton. Environ Pollut Series. A, Ecol Biol. 1984;36(2):165189. Google Scholar
Lindstrom EA, Trasan TS. Influence of current velocity on periphyton distribution and succession in a Norwegian soft water river. Verh Int Ver Limnol. 1984;22:19651972. Google Scholar
McGuire MJ, Jones RM, Means EG, Izaguirre G, Preston AE. Controlling attached blue-green algae with copper sulfate. J Amer Water Works Assoc.1984;76(5):6065. Google Scholar
Parker BC, Schumacher GJ, Whitford LA. Some rarely reported algae of the Appalachian Mountains, Eastern North America: Why so rare? Va J Sci. 1984;35:197215. Google Scholar
Stevenson RJ. Epilithic and epipelic diatoms in the Sandusky River with emphasis on species diversity and water pollution. Hydrobiologia. 1984;114:161175. Google Scholar
Sládečková A. The role of periphyton in water supply. Verh Int Ver Limnol. 1991;24:21742178. Google Scholar
Water Environment Research Literature Review. Substratum-associated Microbiota. Alexandria (VA): Water Environment Federation; annual publication. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 10300 periphyton In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.208

SHARE

FROM THE DISCUSSION FORUM: