The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Blaustein AR, Romansic JM, Kiesecker JM, Hatch A. Ultraviolet radiation, toxic chemicals and amphibian population declines. Diversity Distrib. 2003;9(2):123140. Google Scholar
2. Collins JP, Storfer A. Global amphibian declines: sorting the hypotheses. Diversity Distrib. 2003;9(2):8998. Google Scholar
3. Simon SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischm DL, Waller RW. Status and trends of amphibian declines and extinctions worldwide. Science. 2004;306(5702):17831786. Google Scholar
4. Sparling DW, Krest SK, Linder G. Chapter 1: Multiple stressors and declining amphibian populations: an integrated analysis of cause–effect to support adaptive resource management. In: Linder GL, Krest SK, Sparling DW, eds. Amphibian decline: an integrated analysis of multiple stressor effects. Pensacola (FL): Society of Environmental Toxicology and Chemistry (SETAC) Press; 2003. Google Scholar
5. Burkhardt JG, Bidwell JR, Fort DJ, Sheffield SR. Chapter 4: Chemical stressors. In: Linder GL, Krest SK, Sparling DW, eds. Amphibian decline: an integrated analysis of multiple stressor effects. Pensacola (FL): Society of Environmental Toxicology and Chemistry (SETAC) Press; 2003. Google Scholar
6. Deuchar EM. Xenopus: The South African clawed frog. New York (NY): Wiley; 1975. Google Scholar
7. Kobel HR, Loumont C, Tinsley RC. Chapter 2: The extant species. In: Tinsle RC, Kobel HR, eds. The biology of Xenopus. Oxford (UK): Oxford University Press; 1996. Google Scholar
8. Rodel MO. Herpetofauna of west Africa, Vol. 1: amphibians of the west African savannah. Frankfurt au Main, Germany: Edition Chimaira; 2000. Google Scholar
9. Conant R, Collins JT. A field guide to the reptiles and amphibians of eastern and central North America. 3rd ed. (expanded). Boston (MA): Houghton Mifflin Co.; 1998. Google Scholar
10. Minton SA. Amphibians & reptiles of Indiana. 2nd ed. (revised). Indianapolis (IN): Indiana Academy of Science; 2001. Google Scholar
11. Hinshaw S. Northern leopard frog. In: Hunter ML Jr, Calhoun AJK, McCullough M, eds. Maine amphibians and reptiles. Orono (ME): University of Maine Press; 1999. Google Scholar
12. Albright J. Bullfrog. In: Hunter ML Jr, Calhoun AJK, McCullough M, eds. Maine amphibians and reptiles. Orono (ME): University of Maine Press; 1999. Google Scholar
13. Bury RB, Whelan JA. Ecology and management of the bullfrog; U.S. Department of Interior Fish and Wildlife Service. Resource Publication No.: 155. Washington DC: U.S. Department of Interior; 1984. Google Scholar
14. Hirsch N, Zimmerman LB, Grainger RM. Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn. 2002;225(4):422433. Google Scholar
15. Song MO, Fort DJ, Mclaughlin DL, Rogers RL, Thomas JH, Buzzard BO, Noll AM, Myers NK. Evaluation of Xenopus tropicalis as an alternative test organism for frog embryo teratogenesis assay–Xenopus (FETAX). Drug Chem Toxicol. 2003;26(3):177189. Google Scholar
16. Fort DJ, Rogers RL, Thomas JH, Buzzard BO, Noll AM, Spaulding CD. Comparative sensitivity of Xenopus tropicalis and Xenopus laevis as test species for the FETAX model. J Appl Toxicol. 2004;24(6):443457. Google Scholar
17. Fort DJ, Rogers RL. Chapter 3: Enhanced frog embryo teratogenesis assay Xenopus model using Xenopus tropicalis. In: Ostrander GK, ed. Techniques in aquatic toxicology, Vol. 2, Section 1: techniques for assessment of toxicity in whole organisms. Boca Raton (FL): CRC Press; 2005. Google Scholar
18. Berg C, Gyllenhammar I, Kvarnryd M. Xenopus tropicalis as a test system for developmental and reproductive toxicity. J Toxicol Environ Health. 2009;72(3–4):219225. Google Scholar
1. Standard guide for conducting the frog embryo teratogenesis assay–Xenopus (FETAX) (ASTM E1439-98(2004)). In: Annual book of ASTM standards, Vol. 11.05. West Conshohocken (PA): ASTM International; 2004. Google Scholar
2. Fort DJ, Rogers RL. Chapter 3: Enhanced frog embryo teratogenesis assay: Xenopus model using Xenopus tropicalis. In: Ostrander GK, ed. Techniques in aquatic toxicology, Vol. 2, Section 1: techniques for assessment of toxicity in whole organisms. Boca Raton (FL): CRC Press; 2005. Google Scholar
3. Song MO, Fort DJ, McLaughlin DL, Rogers RL, Thomas JH, Buzzard BO, Noll AM, Myers NK. Evaluation of Xenopus tropicalis as an alternative test organism for frog embryo teratogenesis assay-Xenopus (FETAX). Drug Chem Toxicol. 2003;26(3):177189. Google Scholar
4. Fort DJ, Rogers RL, Thomas JH, Buzzard BO, Noll AM, Spaulding CD. Comparative sensitivity of Xenopus tropicalis and Xenopus laevis as test species for the FETAX model. J Appl Toxicol. 2004;24(6):443457. Google Scholar
5. National Academy of Sciences. Amphibians: guidelines for the breeding, care, and management of laboratory animals. Washington DC: National Academy Press; 1974. Google Scholar
6. Gutleb AC, Bronkhorst M, van den Berg JHJ, Murk AJ. Latex laboratory-gloves: an unexpected pitfall in amphibian toxicity assays with tadpoles. Environ Toxicol Pharmacol. 2001;10(3):119121. Google Scholar
7. Cashins SD, Alford RA, Skerratt LF. Lethal effect of latex, nitrile, and vinyl gloves on tadpoles. Herpetol Review. 2008;39(3):298301. Google Scholar
8. Organisation of Economic Cooperation and Development. OECD 231: guideline for the testing of chemicals: the amphibian metamorphosis assay. Paris (France): OECD; 2009. Google Scholar
9. Endocrine disruptor screening program test guidelines, OPPTS 890.1100: amphibian metamorphosis (Frog) (EPA 740-C-09-002). Washington DC: U.S. Environmental Protection Agency; 2009. Google Scholar
10. Tietge JE, Ankley GT, Defoe DL, Holcombe GW, Jensen KM. Effects of water quality on development of Xenopus laevis: a frog embryo teratogenesis assay—Xenopus assessment of surface water associated with malformations in native anurans. Environ Toxicol Chem. 2000;19(8):21142121. Google Scholar
11. McCallum ML, Rayburn JR. A simple method for housing Xenopus during oviposition and obtaining eggs for use in FETAX. Herpetol Review. 2006;37(3):331332. Google Scholar
12. Easley KA, Culley DD Jr, Horsemen ND, Penkala JE. Environmental influences on hormonally induced spermiation of the bullfrog, Rana catesbeiana. J Exp Zool. 1979;207(3):407416. Google Scholar
13. Waggener WL, Carroll EJ, Jr. A method for hormonal induction of sperm release in anurans (eight species) and in vitro fertilization in Lepidobatrachus species. Dev Growth Differ. 1998;40(1):1925. Google Scholar
14. Cope RB, Miller CA, Post M, Mateus-Pinnilla NE, Murphy JE, Beasley VR. Use of synthetic human luteinizing hormone releasing hormone for induction of breeding in the cricket frog, Acris crepitans. J Herpetel Med Surg. 2000;10(1):78. Google Scholar
15. Gosner KL. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 1960;16(3):183190. Google Scholar
16. Nieuwkoop PD, Faber J. Normal table of Xenopus laevis (Daudin). New York (NY): Garland Publishing; 1994. Google Scholar
17. Bantle JA, Dumont JN, Finch RA, Linder G. Atlas of abnormalities: a guide for the performance of FETAX. Stillwater (OK): Oklahoma State Publications Department; 1991. Google Scholar
18. Chen TH, Gross JA, Karasov WH. Sublethal effects of lead on Northern leopard frog (Rana pipiens) tadpoles. Environ Toxicol Chem. 2006;25(5):13831389. Google Scholar
19. Chen TH, Gross JA, Karasov WH. Adverse effects of chronic copper exposure in larval Northern leopard frogs (Rana pipiens). Environ Toxicol Chem. 2007;26(7):14701475. Google Scholar
20. Gross JA, Chen TH, Karasov WH. Lethal and sublethal effects of chronic cadmium exposure on Northern leopard frog (Rana pipiens) tadpoles. Environ Toxicol Chem. 2007;26(6):11921197. Google Scholar
21. Mitsui N, Fujii T, Miyahara M, Oka T, Kashiwagi A, Kashiwagi K, Hanada H, Urushitani H, Santo N, Tooi O, et al. Development of metamorphosis assay using Silurana tropicalis for the detection of thyroid system-disrupting chemicals. Ecotoxicol Environ Saf. 2006;64(3):281287. Google Scholar
22. Hirschfield WJ, Richards CM, Nace GW. Growth of larval and juvenile Rana pipiens on four laboratory diets. Am Zool. 1970;10(3):315316. Google Scholar
23. Gross JA, Johnson PTJ, Prahl LK, Karasov WH. Critical period of sensitivity for effects of cadmium on frog growth and development. Environ Toxicol Chem. 2009;28(6):12271232. Google Scholar
24. Cary Coyle TL, Karasov WH. Chronic, dietary polybrominated diphenyl ether exposure affects survival, growth, and development of Rana pipiens tadpoles. Environ Toxicol Chem. 2010;29(1):133141. Google Scholar
25. Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians (ASTM E729-96(2002)). In: Annual book of ASTM standards, Vol. 11.05. West Conshohocken (PA): ASTM International; 2004. Google Scholar
26. Standard guide for conducting acute toxicity test on aqueous ambient samples and effluents with fishes, macro invertebrates, and amphibians (ASTM E1192-97(2003)). In: Annual book of ASTM standards, Vol. 11.05. West Conshohocken (PA): ASTM International; 2004. Google Scholar
27. Minton SA. Amphibians & reptiles of Indiana. 2nd ed. (revised). Indianapolis (IN): Indiana Academy of Science; 2001. Google Scholar
28. Hunter ML Jr, Calhoun AJK, McCullough M. Maine amphibians and reptiles. Orono (ME): University of Maine Press; 1999. Google Scholar
29. Bury RB, Whelan JA. Ecology and management of the bullfrog; U.S. Department of Interior Fish and Wildlife Service. Resource Publication No.: 155. Washington DC: U.S. Department of Interior; 1984. Google Scholar
30. Mader DR. Reptile medicine and surgery. Philadelphia (PA): W.B. Saunders; 1995. Google Scholar
31. Fowler ME, Miller RE. Zoo and wildlife medicine: current therapies. 4th ed. Philadelphia (PA): W.B. Saunders; 1999. Google Scholar
1. Standard guide for conducting the frog embryo teratogenesis assay-Xenopus (FETAX); ASTM E1439-98(2004). In: Annual book of ASTM standards, Vol. 11.05. West Conshohocken (PA): ASTM International; 2004. Google Scholar
2. Fort DJ, Rogers RL. Chapter 3: Enhanced frog embryo teratogenesis assay: Xenopus model using Xenopus tropicalis. In: Ostrander GK, ed. Techniques in aquatic toxicology, Vol. 2, Section 1: techniques for assessment of toxicity in whole organisms. Boca Raton (FL): CRC Press; 2005. Google Scholar
3. Song MO, Fort DJ, McLaughlin DL, Rogers RL, Thomas JH, Buzzard BO, Noll AM, Myers NK. Evaluation of Xenopus tropicalis as an alternative test organism for frog embryo teratogenesis assay–Xenopus (FETAX). Drug Chem Toxicol. 2003;26(3):177189. Google Scholar
4. Fort DJ, Rogers RL, Thomas JH, Buzzard BO, Noll AM, Spaulding CD. Comparative sensitivity of Xenopus tropicalis and Xenopus laevis as test species for the FETAX model. J Appl Toxicol. 2004;24(6):443457. Google Scholar
5. Fort DJ, Stover EL. Significance of experimental design in evaluating ecological hazards of sediments/soils to amphibian species. In: Dwyer FJ, Doane TR, Hinman ML, eds. Environmental toxicology and risk assessment: modeling and risk assessment, Vol. 6 (ASTM STP 1317). Philadelphia (PA): American Society for Testing and Materials; 1997. Google Scholar
6. Linder G, Wyant J, Meganck R, Williams B. Evaluating amphibian responses in wetlands impacted by mining activities in the western United States. In: Comer RD, Davis PR, Foster SQ, Grant CV, Rush S, Thorne O, Todd J, eds. Proceedings V: issues and technology in the management of impacted wildlife. Boulder (CO): Thorne Ecological Institute; 1991. Google Scholar
7. Gosner KL. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 1960;16(3):183190. Google Scholar
8. Nieuwkoop PD, Faber J. Normal tables of Xenopus laevis (Daudin). New York (NY): Garland Publishing; 1994. Google Scholar
9. Bantle JA, Dumont JN, Finch RA, Linder G. Atlas of abnormalities: a guide for the perfomance of FETAX. Stillwater (OK): Oklahoma State Publications Department; 1991. Google Scholar
10. Rayburn JR, Friedman M, Bantle JA. Synergistic interaction of glycoalkaloids α-chaconine and α-solanine on developmental toxicity in Xenopus embryos. Food Chem Toxicol. 1995;33(12):10131019. Google Scholar
11. Rayburn JR, Bantle JA, Qualls CW Jr, Friedman M. Protective effects of glucose-6-phosphate and NADP against α-chaconine-induced developmental toxicity in Xenopus embryos. Food Chem Toxicol. 1995;33(12):10211025. Google Scholar
12. Moser B, Rayburn JR. Evaluation of developmental toxicity of interaction between caffeine and pseudoephedrine using frog embryo teratogenesis assay-Xenopus (FETAX). Bios. 2007;78(1):19. Google Scholar
13. Standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians (ASTM E729-96). In: Annual book of ASTM standards, Vol. 11.05. West Conshohocken (PA): ASTM International; 2000. Google Scholar
14. Standard guide for conducting acute toxicity test on aqueous ambient samples and effluents with fishes, macroinvertebrates, and amphibians (ASTM E1192-97(2003)). In: Annual book of ASTM standards, Vol. 11.05. West Conshohocken (PA): ASTM International; 2004. Google Scholar
15. Organisation of Economic Cooperation and Development. OECD 231: guideline for the testing of chemicals: the amphibian metamorphosis assay. Paris (France): OECD; 2009. Google Scholar
16. Endocrine disruptor screening program test guidelines. OPPTS 890.1100: amphibian metamorphosis (Frog) (EPA 740-C-09-002). Washington DC: U.S. Environmental Protection Agency; 2009 [accessed 2011 October]. http://www.epa.gov/ocspp/pubs/frs/publications/Test_Guidelines/series890.htm. Google Scholar
17. Grim KC, Wolfe M, Braunbeck T, Iguchi T, Ohta Y, Tooi O, Touart L, Wolfe D, Tietge J. Thyroid histopathology assessments for the amphibian metamorphosis assay to detect thyroid-active substances. Toxicol Pathol. 2009;37(4):415424. Google Scholar
18. Coady K, Marino T, Thomas J, Currie R, Hancock G, Crofoot J, McNalley L, McFadden L, Geter D, Kleck G. Evaluation of the amphibian metamorphosis assay: exposure to the goitrogen methimazole and the endogenous thyroid hormone L-thryoxine. Environ Toxic Chem. 2010;29(4):869880. Google Scholar
19. Mitsui N, Fujii T, Miyahara M, Oka T, Kashiwagi A, Kashiwagi K, Hanada H, Urushitani H, Santo N, Tooi O, et al. Development of metamorphosis assay using Silurana tropicalis for the detection of thyroid system-disrupting chemicals. Ecotoxicol Environ Saf. 2006;64(3):281287. Google Scholar
20. Organisation of Economic Cooperation and Development. Current approaches in the statistical analysis of ecotoxicity data: a guidance to application (Environmental Health and Safety Publications; Series on Testing and Assessment, No. 54). Paris (France): OECD; 2006. Google Scholar
21. Linder G, Barbitta J, Kwaiser T. ASTM STP 1096: short-term amphibians toxicity tests and paraquat toxicity assessments. In: Landis WG, van der Schalie WH, eds. Aquatic toxicology and risk assessment, Vol. 13. Philadelphia (PA): American Society for Testing and Materials; 1990. Google Scholar
22. Fort DJ, Stover EL. ASTM STP 1306: effect of low-level copper and pentachlorophenol exposure on various early life stages of Xenopus laevis. In: Bengston DA, Henshel DS, eds. Environmental toxicology and risk assessment: biomarkers and risk assessment, Vol. 5. Philadelphia (PA): American Society for Testing and Materials; 1996. Google Scholar
23. Fort DJ, Stover EL. ASTM STP 1317: development of short-term, whole-embryo assays to evaluate detrimental effects on amphibian limb development and metamorphosis using Xenopus laevis. In: Dwyer FJ, Doane TR, Hinman ML, eds. Environmental toxicology and risk assessment: modeling and risk assessment, Vol. 6. Philadelphia (PA): American Society for Testing and Materials; 1997. Google Scholar
24. Fort DJ, Propst TL, Stover EL, Helgen JC, Levey RB, Gallagher K, Burkhart JG. Effects of pond water, sediment, and sediment extracts from Minnesota and Vermont, USA, on early development and metamorphosis of Xenopus. Environ Toxicol Chem. 1999;18(10):23052315. Google Scholar
25. Fort DJ, Rogers R, Copley HF, Bruning L, Stover E, Rapaport D. Effect of sulfometuron methyl and nicosulfuron on development and metamorphosis in Xenopus laevis: impact of purity. Environ Toxicol Chem. 1999;18(12):29342940. Google Scholar
26. Fort DJ, Rogers R, Copley HF, Bruning L, Stover E, Helgen JC, Burkhart JG. Progress toward identifying causes of maldevelopment induced in Xenopus by pond water and sediment extracts from Minnesota, USA. Environ Toxicol Chem. 1999;18(10):23162324. Google Scholar
27. Chen TH, Gross JA, Karasov WH. Sublethal effects of lead on Northern leopard frog (Rana pipiens) tadpoles. Environ Toxicol Chem. 2006;25(5):13831389. Google Scholar
28. Chen TH, Gross JA, Karasov WH. Adverse effects of chronic copper exposure in larval Northern leopard frogs (Rana pipiens). Environ Toxicol Chem. 2007;26(7):14701475. Google Scholar
29. Gross JA, Chen TH, Karasov WH. Lethal and sublethal effects of chronic cadmium exposure on Northern leopard frog (Rana pipiens) tadpoles. Environ Toxicol Chem. 2007;26(6):11921197. Google Scholar
30. Standard guide for behavioral testing in aquatic toxicology (ASTM E1694-94). In: Annual book of ASTM standards, Vol. 11.05. West Conshohocken (PA): ASTM International; 2000. Google Scholar
31. Jung RE, Jagoe CH. Effects of low pH and aluminum on body size, swimming performance, and susceptibility to predation of green tree frog (Hyla cinerea) tadpoles. Can J Zool. 1995;73(12):21712183. Google Scholar
32. Raimondo SM, Rowe CL, Congdon JD. Exposure to coal ash impacts swimming performance and predator avoidance in larval bullfrogs (Rana catesbeiana). J Herpetol. 1998;32(2):289292. Google Scholar
33. Hopkins WA, Congdon J, Ray JK. Incidence and impact of axial malformations in larval bullfrogs (Rana catesbeiana) developing in sites polluted by a coal-burning power plant. Environ Toxicol Chem. 2000;19(4):862868. Google Scholar
34. Walker SE, Taylor DH, Oris JT. Behavioral and histopathological effects of fluoranthene on bullfrog larvae (Rana catesbeiana). Environ Toxicol Chem. 1998;17(4):734739. Google Scholar
35. Bridges CM. Effects of a pesticide on tadpole activity and predator avoidance behavior. J Herpetol. 1999;33(2):303306. Google Scholar
36. Jacobs AJ, Taylor DH. Chemical communication between Desmognathus quadramaculatus and Desmognathus monticola. J Herpetol. 1992;26(1):9395. Google Scholar
37. Steele CW, Strickler-Shaw S, Taylor DH. Behavior of tadpoles of the bullfrog, Rana catesbeiana, in response to sublethal lead exposure. Aquat Toxicol. 1989;14(4):331343. Google Scholar
38. Taylor DH, Steele CW, Strickler-Shaw S. Responses of green frog (Rana clamitans) tadpoles to lead-polluted water. Environ Toxicol Chem. 1990;9(1):8793. Google Scholar
39. Steele CW, Strickler-Shaw S, Taylor DH. Failure of Bufo americanus tadpoles to avoid lead-enriched water. J Herpetol. 1991;25(2): 241243. Google Scholar
40. Steele CW, Strickler-Shaw S, Taylor DH. ASTM STP 1216: avoidance–preference testing in aquatic toxicology: toward a standard methodology. In: Gorsuch JW, Dwyer FJ, Ingersoll CG, LaPoint TW, eds. Environmental toxicology and risk assessment, Vol. 2. Philadelphia (PA): American Society for Testing and Materials; 1993. Google Scholar
41. Steele CW, Strickler-Shaw S, Taylor DH. ASTM STP 1306: ecological implications of the effects of sublethal lead exposure on behaviors of green frog, bullfrog, and American toad tadpoles. In: Bengston DA, Henshel DS, eds. Environmental toxicology and risk assessment: biomarkers and risk assessment, Vol. 5. Philadelphia (PA): American Society for Testing and Materials; 1996. Google Scholar
42. Steele CW, Strickler-Shaw S, Taylor DH. Effects of sublethal lead exposure on the behaviours of green frog (Rana clamitans), bullfrog (Rana catesbeiana) and American toad (Bufo americanus) tadpoles. Mar Freshwater Behav Physiol. 1999;32(1):116. Google Scholar
43. Rice TM, Walker SE, Blackstone BJ, Taylor DH. A new method for marking individual anuran larvae. Herpetol Rev. 1999;29(2):9293. Google Scholar
44. Anholt BR, Negovetic S, Som C. Methods for anaesthetizing and marking larval anurans. Herpetol. Rev. 1998;29(3):150154. Google Scholar
45. Rice TM, Blackstone BJ, Nixdorf WL, Taylor DH. Exposure to lead induces hypoxia-like responses in bullfrog larvae (Rana catesbeiana). Environ Toxicol Chem. 1999;18(10):22832288. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 8930 amphibians (proposed) In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.177

SHARE

FROM THE DISCUSSION FORUM: