A. Introduction References
1.
Dutka BJ.
Coliforms are an inadequate index of water quality. J Environ Health.
1973;36(1):
39–
46.
Google Scholar2.
Caldwell GG,
Lindsey NJ,
Wulff H,
Donnelly DD,
Bohl FN.
Epidemic of adenovirus type 7 acute conjunctivitis in swimmers. Am J Epidemiol.
1974;99(3):
230–
234.
Google Scholar3.
Faine S. Leptospira and Leptospirosis.
Boca Raton (FL):
CRC Press Inc.;
1993.
Google ScholarA. Introduction Bibliography
Cabelli VJ.
Indicators of recreational water quality. In:
Hoadley A,
Dutka B, eds. Bacterial indicators/Health hazards associated with waters.
Philadelphia (PA):
ASTM International;
1977, p.
222–
238.
Google Scholar Dufour AP.
Diseases caused by water contact. In:
Craun G, ed. Waterborne diseases in the United States.
Boca Raton (FL):
CRC Press Inc;
1986.
Google Scholar Moe CL.
Waterborne transmission of infectious agents. In: Manual of environmental microbiology.
Washington, DC:
ASM Press;
1996.
Google Scholar American Water Works Association. Waterborne pathogens. AWWA Manual M48,
Denver (CO):
American Water Works Assoc.;
2006.
Google Scholar B. Swimming Pools References
1.
Centers for Disease Control and Prevention. Model Aquatic Health Code: Code Language.
3rd Edition.
Atlanta (GA):
Centers for Disease Control and Prevention, Department of Health and Human Services;
2018.
Google Scholar2.
Craun GF,
Calderon RL,
Craun MF.
Outbreaks associated with recreational water in the United States. Int J Environ Health Res.
2005;15(4):
243–
262.
Google Scholar3.
American Public Health Association.
1981. Public Swimming Pools: Recommended Regulations for Design and Construction, Operation and Maintenance.
Washington, D.C.
Google Scholar4.
Seyfried PL,
Tobin RS,
Brown NE,
Ness PF.
A prospective study of swimming-related illness. II. Morbidity and the microbiological quality of water. Amer J Pub Health.
1985;75(9):
1071–
1075.
Google Scholar5.
Klapes NA,
Vesley D.
Rapid assay for in situ identification of coagulase- positive staphylococci recovered by membrane filtration from swimming pool water. Appl Environ Microbiol.
1986;52(3):
589–
590.
Google Scholar6.
Covert TC,
Scarpino PV.
Comparison of Baird-Parker agar, Vogel-Johnson agar, and M-Staphylococcus broth for the isolation and enumeration of Staphylococcus aureus in swimming pool waters. Abstract from Annual Meeting American Society of Microbiology,
Atlanta (GA).
Washington DC: American Society of Microbiology;
1987.
Google Scholar7.
Charoenca N,
Fujioka RS.
Association of staphylococcal skin infections and swimming. Water Sci Technol.
1995;31(5-6):
11–
17.
Google Scholar8.
Baird-Parker AC.
An improved diagnostic and selective medium for isolating coagulase positive staphylococci. J Appl Bacteriol.
1962;25:
12–
19.
Google Scholar9.
Abid N,
Maalej S,
Rouis S.
Morphological and physiological changes of Staphylococcus aureus exposed to hypochlorous acid. Lett Appl Microbiol.
2004;38(3):
245–
250.
Google ScholarB. Swimming Pools Bibliography
Working Party of the Public Health Laboratory Service.
1965. A bacteriological survey of swimming baths in primary schools.
Mon Bull Minist Health Pub Health Lab Serv. 24:
116–122.
Google Scholar Gunn BA,
Dunkelberg WE Jr,
Creitz JR.
Clinical evaluation of 2% LSM medium for primary isolation and identification of staphylococci. Amer J Clin Pathol.
1972;57(2):
236–
240.
Google Scholar Hatcher RF,
Parker BC.
Investigations of freshwater surface microlayers. VPI-SRRC-BULL 64.
Blacksburg (VA):
Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University;
1974.
Google Scholar U.S. Environmental Protection Agency.
Test Methods for Escherichia coli and Enterococci in Water by the Membrane Filter Procedure; EPA-600/4-85/076;
1985 Google Scholar Hurst CJ.
Disinfection of drinking water, swimming-pool-water and treated sewage effluent. In:
Block SS. Disinfection, sterilization and preservation,
5th ed.
Philadelphia (PA):
Lippincott Williams & Wilkins;
2001.
Google Scholar 1. Centers for Disease Control and Prevention. Suggested health and safety guidelines for public spas and hot tubs; DHHS-CDC #99-960.
Washington DC:
U.S. Government Printing Office;
1981.
Google Scholar2.
Solomon SL.
Host factors in whirlpool-associated Pseudomonas aeruginosa skin disease. Infect Control.
1985;6(10):
402–
406.
Google Scholar3.
Highsmith AK,
Le PN,
Khabbaz RF,
Munn VP.
Characteristics of Pseudomonas aeruginosa isolated from whirlpools and bathers. Infect Control.
1985;6(10):
407–
412.
Google Scholar4.
Groothuis DG,
Havelaar AH,
Veenendaal HR.
A note on legionellas in whirlpools. J Appl Bacteriol.
1985;58(5):
479–
481.
Google Scholar5.
Highsmith AK,
Favero MS.
Microbiologic aspects of public whirlpools. Clin Microbiol Newsletter.
1985;7(2):
9–
11.
Google Scholar6.
Hall N.
Whirlpools and Pseudomonas aeruginosa. UHL Lab Hotline
1984;21:9.
Google ScholarC. Whirlpools Bibliography
Geldreich EE,
Highsmith AK,
Martone WJ.
Public whirlpools—the epidemiology and microbiology of disease. Infect Control.
1985;6(10):
392–
393.
Google Scholar D. Natural Bathing Beaches References
1.
Cabelli VJ. Health effects criteria for marine recreational waters; EPA-600/1-80-031.
Research Triangle Park (NC):
Health Effects Laboratory, U.S. Environmental Protection Agency;
1983.
Google Scholar2.
Dufour AP. Health effects criteria for fresh recreational waters; EPA-600/1-84-004.
Research Triangle Park (NC):
Health Effects Research Laborotory, U.S. Environmental Protection Agency,
1984.
Google Scholar3.
Keswick BH,
Gerba CP,
Goyal SM.
Occurrence of enteroviruses in community swimming pools. Amer J Pub Health.
1981;71(9):
1026–
1030.
Google Scholar4.
Dutka BJ,
Kwan KK.
Health-indicator bacteria in water-surface microlayers. Can J Microbiol.
1978;24(2):
187–
188.
Google Scholar5.
Cabelli VJ,
Kennedy H,
Levin MA.
Pseudomonas aeruginosa-fecal coliform relationships in estuarine and fresh recreational waters. J Water Pollut Control Fed.
1976;48(2):
367–
376.
Google Scholar6.
Sherry JP,
Kuchma SR,
Dutka BJ.
The occurrence of Candida albicans in Lake Ontario bathing beaches. Can J Microbiol.
1979;25(9):
1036–
1044.
Google Scholar7.
Stevens AR,
Tyndall RL,
Coutant CC,
Willaert E.
Isolation of the etiological agent of primary amoebic meningoencephalitis from artificially heated waters. Appl Environ Microbiol.
1977;34(6):
701–
705.
Google Scholar8.
Wellings FM,
Amuso PT,
Chang SL,
Lewis AL.
Isolation and identification of pathogenic Naegleria from Florida lakes. Appl Environ Microbiol.
1977;34(6):
661–
667.
Google Scholar9.
N’Diaye A,
Georges P,
N’Go A,
Festy B.
Soil amoebas as biological markers to estimate the quality of swimming pool waters. Appl Environ Microbiol.
1985;49(5):
1072–
1075.
Google Scholar10. U.S. Environmental Protection Agency. Ambient water quality criteria for bacteria—1986; EPA-440/5-84-002.
Washington DC:
U.S. Environmental Protection Agency;
1986.
Google Scholar11. Method 1603:
Escherichia coli (E. coli) in Water by membrane filtration using modified membrane-thermotolerant E. coli agar (modified mTEC).
Washington DC:
Office of Water, Environmental Protection Agency;
2014.
Google Scholar12.
Charoenca N,
Fujioka R.
Assessment of Staphylococcus bacteria in Hawaii’s marine recreational waters. Water Sci Technol.
1993;27 (3–4):
283–
289.
Google ScholarD. Natural Bathing Beaches Bibliography
Olivieri VP,
Druse CW,
Kawata K. Microorganisms in urban stormwater; EPA-600/2-77-087.
Cincinnati (OH):
U.S. Environmental Protection Agency;
1977.
Google Scholar Rice EW,
Covert TC,
Wild DK,
Berman D,
Johnson SA,
Johnson CH.
Comparative resistance of Escherichia coli and Enterococci to chlorination. J Environ Health.
1993;28(1):
89–
97.
Google Scholar E. Membrane Filter Technique for Pseudomonas aeruginosa Bibliography
Drake CH.
Evaluation of culture media for the isolation and enumeration of Pseudomonas aeruginosa. Health Lab Sci.
1966;3(1):
10–
19.
Google Scholar Brown MRW,
Foster JHS.
A simple diagnostic milk medium for Pseudomonas aeruginosa. J Clin Pathol.
1970;23:
172–
177.
Google Scholar Levin MA,
Cabelli VJ.
Membrane filter technique for enumeration of Pseudomonas aeruginosa. Appl Microbiol.
1972; 24(6):
864–
870.
Google Scholar Dutka BJ,
Kwan KK.
Confirmation of the single-step membrane filter procedure for estimating Pseudomonas aeruginosa densities in water. Appl Environ Microbiol.
1977;33(2):
240–
245.
Google Scholar Brodsky MH,
Ciebin BW.
Improved medium for recovery and enumeration of Pseudomonas aeruginosa from water using membrane filters. Appl Environ Microbiol.
1978;36(1):
26–
42.
Google Scholar G. Enzyme Substrate Test for Pseudomonas aeruginosa References
2.
Sartory DP,
Pauly D,
Garrec N,
Bonadonna L,
Semproni M,
Schell C,
Reimann A,
Firth SJ,
Thom C,
Hartemann P,
et al.
Evaluation of an MPN test for the rapid enumeration of Pseudomonas aeruginosa in hospital waters. J Water Health.
2015;13(12):
427–
436.
Google Scholar4.
Spies K,
Pleischl S,
Sartory D.
Comparison of the Pseudalert/Quanti- Tray MPN test for the enumeration of Pseudomonas aeruginosa in cooling tower water with the ISO 16266 membrane filtration culture- based method. J Appl Microbiol.
2020;128(6):
1843–
1850.
Google Scholar5.
Sartory DP,
Brewer M,
Beswick A,
Steggles D.
Evaluation of the Pseudalert/Quanti-Tray MPN Test for the rapid enumeration of Pseudomonas aeruginosa in swimming pool and spa pool waters. Curr Microbiol.
2015;71(6):
699–
705.
Google Scholar6. IDEXX Laboratories, Inc.
2011.
An ISO/TR 13843 Method Performance Validation for the Pseudalert*/Quanti-Tray* System for the Quantitative Detection of Pseudomonas aeruginosa in water. IDEXX Report 100465-00;
May.
Google Scholar7. ISO 16266-2:2018;
Water quality—Detection and enumeration of Pseudomonas aeruginosa—Part 2: Most probable number method. ISO/TR 13843 Method performance validation; 2018.
Geneva, Switzerland:
International Organization for Standardization,
2018.
Google Scholar