The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
Hucker GJ, Conn HJ. Further studies on the methods of gram staining (Technical Bulletin No. 128). Geneva (NY): New York State Agricultural Experiment Station; 1927. Google Scholar
Cowles PB. A modified fermentation tube. J Bacteriol. 1939;38(6):677678. Google Scholar
Skerman VBD. A guide to the identification of the genera of bacteria. Baltimore (MD): Williams & Wilkins; 1967. Google Scholar
Evans TM, Waarvick CE, Seidler RJ, LeChevallier MW. Failure of the most-probable-number technique to detect coliforms in drinking water and raw water supplies. Appl Environ Microbiol. 1981;41(1):130138. Google Scholar
Gerhards P, ed. Manual of methods for general bacteriology. Washington (DC): American Society for Microbiology; 1981. Google Scholar
Seidler RJ, Evans TM, Kaufman JR, Waarvick CE, LeChevallier MW. 1981. Limitations of standard coliform enumeration techniques. J Amer Water Works Assoc. 1981;73(10):538542. Google Scholar
U.S. Environmental Protection Agency. National primary drinking water regulations. 40 CFR Parts 141, and 142. Fed Reg. 2000;65(8):19502015. Google Scholar
Garrity GM, ed. Part B: The gammaproteobacteria. In: Bergey’s manual of systematic bacteriology, 2nd ed.; Volume 2: The Proteobacteria. New York (NY): Springer; 2005. Google Scholar
Manual for the certification of laboratories analyzing drinking water (EPA 815-R-05-004). Cincinnati (OH): Office of Ground Water and Drinking Water, U.S. Environmental Protection Agency; 2005. Google Scholar
U.S. Environmental Protection Agency. Guidelines for establishing test procedures for the analysis of pollutants under the Clean Water Act; Analysis and sampling procedures: Final Rule. 40 CFR Parts 136, 260, et al. Fed Reg. 2012;77(97):29797. Google Scholar
1. Thomas HA Jr. Bacterial densities from fermentation tube tests. J Amer Water Works Assoc. 1942;34(4):572576. Google Scholar
McCrady MH. The numerical interpretation of fermentation tube results. J Infect Dis. 1915;17(1):183212. Google Scholar
McCrady MH. Tables for rapid interpretation of fermentation-tube results. Pub Health J. 1918;9(5):201220. Google Scholar
Halvorson HO, Ziegler NR. Application of statistics to problems in bacteriology. J Bacteriol. 1933;25(2):101; 1933;26(4):331339; 1935;29(6):609634. Google Scholar
Hoskins JK. The most probable numbers of B. coli in water analysis. J Amer Water Works Assoc. 1933;25(6):867877. Google Scholar
Hoskins JK. Most probable numbers for evaluation of coli-aerogenes tests by fermentation tube method. Pub Health Rep. 1934;49(12):393405. Google Scholar
Eisenhart C, Wilson PW. Statistical methods and control in bacteriology. Bacteriol Rev. 1943;7(2):57137. Google Scholar
Cochran WG. Estimation of bacterial densities by means of the “most probable number.” Biometrics. 1950;6(2):105116. Google Scholar
Woodward RL. How probable is the most probable number? J Amer Water Works Assoc. 1957;49(8):10601068. Google Scholar
DeMan JC. MPN tables, corrected. Eur J Appl Biotechnol. 1983;17:301305. Google Scholar
Blodgett RJ, Garthright WE. Several MPN models for serial dilutions with suppressed growth at low dilutions. Food Microbiol. 1998;15(1):9199. Google Scholar
Garthright WE. Appendix 2: Most probable number from serial dilutions. FDA Bacteriological Analytical Manual, 8th ed., Rev. A. Gaithersburg (MD): AOAC International; 1998. Google Scholar
Blodgett RJ. Measuring improbability of outcomes from a serial dilution test. Commun Statist Theory Meth. 2002;31(22):22092223. Google Scholar
Garthright WE, Blodgett RJ. FDA’s preferred MPN methods for standard, large or unusual tests, with a spreadsheet. Food Microbiol. 2003;20(4):439445. Google Scholar
Blodgett RJ. Appendix 2: most probable number from serial dilutions. FDA Bacteriological Analytical Manual; 2010 [revised 2020 Oct; accessed 2021 Dec]. Available at: http://www.fda.gov/food/foodscienceresearch/laboratory methods/ucm109656.htm. Google Scholar
Weiss JE, Hunter CA. Simplified bacteriological examination of water. J Amer Water Works Assoc. 1939;31(4):707713. Google Scholar
Clark JA. The detection of various bacteria indicative of water pollution by a presence-absence (P-A) procedure. Can J Microbiol. 1969;15(7):771780. Google Scholar
Clark JA, Vlassoff LT. Relationships among pollution indicator bacteria isolated from raw water and distribution systems by the presence-absence (P-A) test. Health Lab Sci. 1973;10(3):163172. Google Scholar
Clark JA. The influence of increasing numbers of nonindicator organisms upon the detection of indicator organisms by the membrane filter and presence-absence tests. Can J Microbiol. 1980;26(7):827832. Google Scholar
Clark JA, Burger CA, Sabatinos LE. Characterization of indicator bacteria in municipal raw water, drinking water, and new main water samples. Can J Microbiol. 1982;28(9):10021013. Google Scholar
Jacobs NJ, Zeigler WL, Reed FC, Stukel TA, Rice EW. Comparison of membrane filter, multiple-fermentation-tube, and presence-absence techniques for detecting total coliforms in small community water systems. Appl Environ Microbiol. 1986;51(5):10071012. Google Scholar
Rice EW, Geldreich EE, Read EJ. The presence-absence coliform test for monitoring drinking water quality. Pub Health Rep. 1989;104(1):54. Google Scholar
Perry CA, Hajna AA. A modified Eijkman medium. J Bacteriol. 1933;26(4):419429. Google Scholar
Perry CA, Hajna AA. Further evaluation of EC medium for the isolation of coliform bacteria and Escherichia coli. Amer J Pub Health. 1944;34(7):735738. Google Scholar
Geldreich EE, Clark HF, Kabler PW, Huff CB, Bordner RH. The coliform group. II. Reactions in EC medium at 45°C. Appl Microbiol. 1958;6(5):347348. Google Scholar
Geldreich EE, Bordner RH, Huff CB, Clark HF, Kabler PW. Type distribution of coliform bacteria in the feces of warm-blooded animals. J Water Pollut Control Fed. 1962;34(3):295301. Google Scholar
Geldreich EE. Sanitary significance of fecal coliforms in the environment (FWPCA Pub. WP-20-3). Washington DC: U.S. Department of the Interior; 1966. Google Scholar
Andrews WH, Presnell MW. Rapid recovery of Escherichia coli from estuarine water. Appl Microbiol. 1972;23(3):521523. Google Scholar
Olson BH. Enhanced accuracy of coliform testing in seawater by a modification of the most-probable-number method. Appl Microbiol. 1978;36(3):438444. Google Scholar
Standridge JH, Delfino JJ. A-1 medium: alternative technique for fecal coliform organism enumeration in chlorinated wastewaters. Appl Environ Microbiol. 1981;42(5):918920. Google Scholar
Feng PCS, Hartman PA. Fluorogenic assays for immediate confirmation of Escherichia coli. Appl Environ Microbiol. 1982;43(6):13201329. Google Scholar
Hartman PA. The MUG (glucuronidase) test for E. coli in food and water. In: Balows A, Tilton RC, Turano A, eds. Rapid methods and automation in microbiology and immunology. Proceedings of the 5th International Symposium on Rapid Methods and Automation in Microbiology & Immunology; 1987 Nov 4–6; Florence, Italy; 1989. Google Scholar
Shadix LC, Rice EW. Evaluation of β-glucuronidase assay for the detection of Escherichia coli from environmental waters. Can J Microbiol. 1991;37(12):908911. Google Scholar
Fiedler J, Reiske J. Glutaminsauredecarboxylase-schnelltest zur identifikation von Escherichia coli. Z Ges Hyg Grenzgeb. 1990;36(11):620622. Google Scholar
Rice EW, Johnson CH, Dunnigan ME, Reasoner DJ. Rapid glutamate decarboxylase assay for detection of Escherichia coli. Appl Environ Microbiol. 1993;59(12):43474349. Errata. Appl Environ Microbiol. 1995;61(2):847847c. Google Scholar
Standing Committee of Analysts. Report on public health and medical subjects no. 71: methods for the examination of waters and associated materials. The microbiology of water part 1—drinking water. London: HMSO Books; 1994. Google Scholar
Rice EW, Johnson CH, Reasoner DJ. Detection of Escherichia coli O157:H7 in water from coliform enrichment cultures. Lett Appl Microbiol. 1996;23(3):179182. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 9221 multiple-tube fermentation technique for members of the coliform group In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.192

SHARE

FROM THE DISCUSSION FORUM: