The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Francis CA, Beman JM, Kuypers MM. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. The Intl Soc Microbial Ecol Journal. 2007;1:1927. Google Scholar
2. Painter HA. Nitrification in treatment of sewage and wastewaters. In: Prosser JI, ed. Nitrification. Washington DC: IRL Press; 1986. Google Scholar
3. Blackburne R, Vadivelu VM, Yuan ZG, Keller J. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res. 2007;41(14):30333042. Google Scholar
4. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, et al. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol. 2003;185(9):27592773. Google Scholar
5. Starkenburg SR, Chain PSG, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ, et al. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol. 2006;72(3):20502063. Google Scholar
6. Alleman JE, Keramida V, Pantea-Kiser L. Light induced Nitrosomonas inhibition. Water Res. 1987;21(4):499501. Google Scholar
7. Fundamentals and control of nitrification in chloraminated drinking water distribution systems; AWWA Manual M56. Denver (CO): American Water Works Association; 2006. Google Scholar
8. Barak Y, Tal Y, van Rijn J. Light-mediated nitrite accumulation during denitrification by Pseudomonas sp. strain JR12. Appl Environ Microbiol. 1998;64(3):813817. Google Scholar
9. Prosser JI. Autotrophic nitrification in bacteria. Adv Microbial Physiol. 1989;30:125181. Google Scholar
10. Koops HP, Möller UC. The lithotrophic ammonia-oxidizing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes, 2nd ed. New York (NY): Springer-Verlag; 1992. Google Scholar
11. Bock E, Koops HP. The genus Nitrobacter and related genera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes, 2nd ed. New York (NY): Springer-Verlag; 1992. Google Scholar
12. Garrity GM, Bell JA, Lilburn T. The Proteobacteria. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, eds. Bergey’s manual of systematic bacteriology, Vol. 2, 2nd ed. New York (NY): Springer-Verlag; 2005. Google Scholar
13. Garrity GM, Holt JG. Phylum BVIII. Nitrospirae. In: Boone DR, Castenholz RW, eds. Bergey’s manual of systematic bacteriology, Vol. 1: The Archaea and the deeply branching and phototrophic bacteria, 2nd ed. New York (NY): Springer-Verlag; 2001. Google Scholar
14. Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM. Missing lithotroph identified as new planctomycete. Nature. 1999;400:446449. Google Scholar
15. Van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology. 1997;143(7):24152421. Google Scholar
16. Kӧnneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543546. Google Scholar
17. Rittmann BE, Snoeyink VL. Achieving biologically stable drinking water. J Amer Water Works Assoc. 1984;76(10):106114. Google Scholar
18. Wolfe RL, Lieu NI, Izaguirre G, Means EG. Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance. Appl Environ Microbiol. 1990;56(2):451462. Google Scholar
19. Paredes D, Kuschk P, Mbwette TSA, Stange F, Müller RA, Kӧser H. New aspects of microbial nitrogen transformations in the context of wastewater treatment—a review. Eng. Life Sci. 2007;7(1):1325. Google Scholar
20. Wastewater technology fact sheet: trickling filter nitrification; EPA 832-F-00-015. Washington DC: Office of Water, U.S. Environmental Protection Agency; 2000. Google Scholar
21. Regan JM, Harrington GW, Noguera DR. Ammonia- and nitrite- oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl Environ Microbiol. 2002;68(1): 7381. Google Scholar
22. Regan JM, Harrington GW, Baribeau H, De Leon R, Noguera DR. Diversity of nitrifying bacteria in full-scale chloraminated distribution systems. Water Res. 2003;37(1):197205. Google Scholar
23. Regan JM, Cho AY, Kim S, Smith CD. Monitoring ammonia- oxidizing bacteria in chloraminated distribution systems. Denver (CO): AWWA Research Foundation; 2007. Google Scholar
24. Vikesland PJ, Ozekin K, Valentine RL. Monochloramine decay in model and distribution system waters. Water Res. 2001;35(7): 17661776. Google Scholar
25. Rittmann BE, Regan JM, Stahl DA. Nitrification as a source of soluble organic substrate in biological treatment. Water Sci Technol. 1994;30(6):18. Google Scholar
26. Wood PM. Nitrification as a bacterial energy source. In: Prosser JI, ed. Nitrification. Washington DC: IRL Press; 1986. Google Scholar
27. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS. Realtime PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol. 2003;37(2):343351. Google Scholar
28. Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Ann Rev Microbiol. 2001;55: 485529. Google Scholar
29. Wagner M. Deciphering functions of uncultured microorganisms. ASM News. 2004;70:6370. Google Scholar
30. Kindaichi T, Kawano Y, Ito T, Satoh H, Okabe S. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnol Bioeng. 2006;94(6):11111121. Google Scholar
31. Tatari K, Musovic S, Gűlay A, Dechesne A, Albrechtsen H-J, Smets. BF. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: dominance of Nitrospira. Water Res. 2017; 127:239248. Google Scholar
32. Wang M, Huang G, Zhao Z, Dang C, Liu W, Zheng M. Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants. Bioresource Technol. 2018; 270:580587. Google Scholar
Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc National Acad Sci. 1990;87(12):45764579. Google Scholar
Brown JR, Doolittle WF. Archaea and the prokaryote-to-eukaryote transition. Microbiol Molec Biol Rev. 1997;61(4):456502. Google Scholar
DeLong EF, Pace NR. Environmental diversity of Bacteria and Archaea. System Biol. 2001;50(4):470478. Google Scholar
Walsh DA, Doolittle WF. The real ‘domains’ of life. Curr Biol. 2005;15(7):R237R240. Google Scholar
Arp DJ, Bottomley PJ. Nitrifiers: More than 100 years from isolation to genome sequences. Microbe. 2006;1:229234. Google Scholar
Ward BB. Nitrogen cycling in aquatic environments. In: Hurst CJ, Crawford R, Garland J, Lipson D, Mills A, Stetzen-bach L, eds. Manual of environmental microbiology, 3rd ed. Washington DC: ASM Press; 2007. Google Scholar
1. Rowe R, Todd R, Waide J. Microtechnique for most-probable-number analysis. Appl Environ Microbiol. 1977;33(3):675680. Google Scholar
2. Schmidt EL, Belser LW. Nitrifying bacteria. In: Methods of soil analyses, Part 2: Chemical and Microbiological Properties. 2nd ed. Madison (WI): American Society of Agronomy; Soil Science Society of America; 1982. (Agronomy Monograph No. 9) Google Scholar
3. Soriano S, Walker N. Isolation of ammonia-oxidizing autotrophic bacteria. J Appl Bacteriol. 1968;31(4):493497. Google Scholar
4. Koops HP, Möller UC. The lithotrophic ammonia-oxidizing bacteria. In: Ballows A, Trüper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes, 2nd ed. New York (NY): Springer-Verlag; 1992. Google Scholar
5. Aleem MIH, Alexander M. Cell-free nitrification by Nitrobacter. J Bacteriol. 1958;76(5):510514. Google Scholar
6. Bock E, Koops HP. The genus Nitrobacter and related genera. In: Ballows A, Trüper HG, Dworkin M, Harder W, Schleifer KH, eds. The Prokaryotes, 2nd ed. New York (NY): Springer-Verlag; 1992. Google Scholar
7. Matulewich VA, Strom PF, Finstein MS. Length of incubation for enumerating nitrifying bacteria present in various environments. Appl Microbiol. 1975;29(2):265268. Google Scholar
8. Belser LW, Mays EL. Use of nitrifier activity measurements to estimate the efficiency of viable nitrifier counts in soils and sediments. Appl Environ Microbiol. 1982;43(4):945948. Google Scholar
9. Wood PM. Nitrification as a bacterial energy source. In: Prosser JI, ed. Nitrification. Washington DC: IRL Press; 1986. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 9245 nitrifying bacteria In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.199

SHARE

FROM THE DISCUSSION FORUM: