The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Borst A, Leverstein-Van-Hall MA, Verhoef J, Fluit AD. Detection of Candida spp. in blood cultures using nucleic acid sequence-based amplification (NASBA). Diagn Microbiol Infect Dis. 2001;39(3):155160. Google Scholar
2. Singh H. Mycoremediation: fungal bioremediation. Hoboken (NJ): John Wiley & Sons; 2006. Google Scholar
3. Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Research. 1991;95(6):641655. Google Scholar
4. Brizzio S, Turchetti B, Degarcia V, Libkind D, Buzzinit P, Vanbroock M. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol. 2007;53(4):519525. Google Scholar
5. Esser K, Lemke PA, eds. The Mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research; Volume VII: systematics and evolution, Part A. Heidelberg: Springer-Verlag; 2001. Google Scholar
6. Nagy LA, Olson BH. The occurrence of filamentous fungi in drinking water distribution systems. Can J Microbiol. 1982;28(6):667671. Google Scholar
7. Niemi RM, Kunth S, Lundstrom K. Actinomycetes and fungi in surface waters and in potable water. Appl Environ Microbiol. 1982;43(2):378388. Google Scholar
8. Hinzelin F, Block JC. Yeasts and filamentous fungi in drinking water. Environ Technol Lett. 1985;6(1–11):101106. Google Scholar
9. Rosenzweig WD, Minnigh H, Pipes WO. Fungi in potable water distribution systems. J Am Water Works Assoc. 1986;78(1):5355. Google Scholar
10. Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I. Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol. 2006;72(12):75867593. Google Scholar
11. Burman NP. Taste and odour due to stagnation and local warming in long lengths of piping. Proc Soc Water Treat Exam. 1965;14(1):125131. Google Scholar
12. Metzler DF, Ritter C, Culp RL. Combined effect of water purification processes on the removal of Histoplasma capsulatum from water. Am J Pub Health. 1956;46(12):15711575. Google Scholar
13. Castellani A. The cultivation of pathogenic fungi in sterile distilled water. Commentarii. 1963;1(30):1. Google Scholar
14. Cooke WB, Kabler PW. The survival of Histoplasma capsulatum in water. Lloydia. 1953;16(4):252256. Google Scholar
15. Bays LR, Burman NP, Lewis WM. Taste and odour in water supplies in Great Britain: a survey of the present position and problems for the future. Water Treat Exam. 1970;19(2):136160. Google Scholar
16. Nyström A, Grimvall A, Krantz-Rulcker C, Savenhed R, Åkerstrand K. Drinking water off-flavour caused by 2,4,6-trichloroanisole. Water Sci Technol. 1992;25(2):241249. Google Scholar
17. Doggett MS. Characterization of fungal biofilms within a municipal water distribution system. Appl Environ Microbiol. 2000;66:1249. Google Scholar
18. Nagy LA, Olson BH. Occurrence and significance of bacteria, fungi, and yeasts associated with distribution pipe surfaces. Proceedings of the Water Quality Technology Conference; 1985 Dec. 8–11; Houston, TX. Denver (CO): American Water Works Association; 1985, pp. 213. Google Scholar
19. Geldrich EE. Microbial quality of water supply in distribution systems. New York (NY): Lewis Publishers; 1995. Google Scholar
20. Latgé JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12(2):310350. Google Scholar
21. Guedes, HLDM, Guimarães AJ, Muniz MDM, Pizzini CV, Hamilton AJ, Peralta JM, Deepe GS Jr, Zancope-Oliveira RM. PCR assay for identification of Histoplasma capsulatum based on the nucleotide sequence of the M antigen. J Clin Microbiol. 2003;41(2):535539. Google Scholar
22. Vishniac HS. Salt requirements of marine phycomycetes 1. Limnol Oceanogr. 1960;5(4):362366. Google Scholar
23. World Health Organization. Chapter 6. Microbial aspects of beach sand quality. In: Guidelines for safe recreational water environments; Vol. 1. Coastal and fresh waters. Geneva, Switzerland: WHO Press; 2003. Google Scholar
24. Ajello L, Getz ME. Recovery of dermatophytes from shoes and shower stalls. J Invest Derm. 1954;22(1):1724. Google Scholar
25. Aho R, Hirn H. A survey of fungi and some indicator bacteria in chlorinated water of indoor public swimming pools. Zentralblatt fur Bakteriologie und Hygiene B. 1981;173(3–4):242249. Google Scholar
26. Kamihama T, Kimura T, Hosokawa JI, Ueji M, Takase T, Tagami K. Tinea pedis outbreak in swimming pools in Japan. Public Health. 1997;111(4):249253. Google Scholar
27. Kishimoto RA, Baker GE. Pathogenic and potentially pathogenic fungi isolated from beach sands and selected soils of Oahu, Hawaii. Mycologia. 1969;61(3):537548. Google Scholar
28. Muller G. Occurrence of dermatophytes in the sands of European beaches. Sci Total Environ. 1973;2(1):116118. Google Scholar
29. Mendes B, Urbano P, Alves C, Morais J, Lapa N, Oliveira JS. Fungi as environmental microbiological indicators. Water Sci Technol. 1998;38(12):155162. Google Scholar
30. Figueira D, Barata M. Marine fungi from two sandy beaches in Portugal. Mycologia. 2007;99(1):2023. Google Scholar
31. Vogel C, Rogerson A, Schatz S, Laubach H, Tallman A, Fell JW. Prevalence of yeasts in beach sand at three bathing beaches in South Florida. Water Res. 2007;41(9):19151920. Google Scholar
32. Microbiological and Chemical Exposure Assessment. EPA technology for mold identification and enumeration. U.S. Environmental Protection Agency; 2014. Google Scholar
33. Engelbrecht RS, Foster DH, Greening EO, Lee SH. New microbial indicators of waste water efficiency (Series No. 670/2-73-082). Cincinnati (OH); 1974. Google Scholar
34. Jones J, Schmitt JA. The effect of chlorination on the survival of cells of Candida albicans. Mycologia. 1978;70(3):684689. Google Scholar
35. Engelbrecht RS, Haas CN. Acid-fast bacteria and yeasts as disinfection indicators: enumeration methodology. Proceedings of the Water Quality Technology Conference; 1977 Dec 4–7; Kansas City (MO). Denver (CO): American Water Works Association; 1977. Google Scholar
36. Haas CN, Engelbrecht RS. Chlorine dynamics during inactivation of coliforms, acid-fast bacteria, and yeasts. Water Res. 1980;14(12):17491757. Google Scholar
37. Haas CN, Engelbrecht RS. Physiological alterations of vegetative microorganisms resulting from chlorination. J Water Pollut Control Fed. 1980;52(7):19761989. Google Scholar
38. Rosenzweig DW, Minnigh HA, Pipes WO. Chlorine demand and inactivation of fungal propagules. Appl Environ Microbiol. 1983;45(1):182186. Google Scholar
39. Blackwell M, Hibbett DS, Taylor JW, Spatafora JW. Research coordination networks: a phylogeny for kingdom fungi. Mycologia. 2006;98(6):82937. Google Scholar
40. Blackwell M, Spatafora JW. Fungi and their allies. In: Biodiversity of fungi, inventory and monitoring methods. New York (NY): Elsevier Academic Press; 2004, pp. 7. Google Scholar
41. Muller GM, Bills GF, Foster MS, eds. Biodiversity of fungi, inventory and monitoring methods. Burlington (MA): Elsevier Academic Press; 2004. Google Scholar
42. Kurtzman CP, Fell JW. The yeasts, a taxonomic study, 4th ed. Amsterdam: Elsevier; 1998. Google Scholar
43. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leewenhoek. 1998;73(4):331371. Google Scholar
44. Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A. Systematics of basidiomycetous yeasts: a comparison of large sub-unit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Research. 2002;2(4):495517. Google Scholar
45. Guarro J, Gene J, Stichigel AM. Development in fungal taxonomy. Clin Microbiol Rev. 1999;12(3):454500. Google Scholar
46. Schena L, Ippolito A, Galitelli D. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol. 2004;110(9):893908. Google Scholar
47. Haugland RA, Brinkman N, Vesper SJ. Evaluation of rapid DNA extraction methods for the quantitative detection of fungi using real-time PCR analysis. J Microbiol Methods. 2002;50(3):319323. Google Scholar
48. Bowyer P, Hoare L, Denning E. Detection of fungi in hospital water supplies using molecular beacons. Proceedings of the 17th European Congress of Clinical Microbiology and infectious Diseases (ECCMiD) & 25th International Congress of Chemotherapy (ICC), 2007 Mar 31–Apr 3; Munich, Germany. Basel: European Society of Clinical Microbiology and Infectious Diseases; 2007. Google Scholar
Emerson R. Mycological organization. Mycologia. 1958;50(5):589621. Google Scholar
Sparrow FK. Fungi (Ascomycetes, Phycomycetes); including W.W. Scott, Key to genera, fungi imperfecti (Aquatic Hyphomy-cetes only). In: Edmondson WT, ed. Ward & Whipple’s fresh water biology, 2nd ed. New York (NY): John Wiley & Sons; 1959. Google Scholar
Cooke WB. A laboratory guide to fungi in polluted waters, sewage, and sewage treatment systems, their identification and culture (USPHS Publication 999-WP-1). Cincinnati (OH): U.S. Public Health Service; 1963. Google Scholar
Cooke WB, Matsuura GS. Distribution of fungi in a waste stabilization pond system. Ecology 50(4):689694; 1969. Google Scholar
Jones EBG. Aquatic fungi. In: Booth C, ed. Methods in microbiology, Vol. 4. New York (NY): Academic Press; 1971, p. 335. Google Scholar
Gareth Jones EB, ed. Recent advances in aquatic mycology. London: Elek Science; 1976. Google Scholar
Fuller MS, ed. Lower fungi in the laboratory. Athens (GA): Department of Botany, University of Georgia; 1978. Google Scholar
Cooke WB. The fungi of “Our Mouldy Earth.” Beihefte zur Nova Hedwigia. 1986;85:467. Google Scholar
Alexopoulos CJ, Mims CW. Introductory mycology, 4th ed. New York (NY): John Wiley & Sons; 1996. Google Scholar
Brock TD. Biology of microorganisms. Englewood Cliffs (NJ): Prentice-Hall; 1997. Google Scholar
Deacon J, ed. Fungal biology, 4th ed. Oxford: Blackwell Publishing; 2006. Google Scholar
Buckley M. The fungal kingdom: diverse and essential roles in earth’s ecosystem. Washington DC: American Society for Microbiology; 2008. Google Scholar
1. Bills GF, Foster MS. Formulae for selected materials used to isolate and study fungi and fungal allies. In: Biodiversity of fungi, inventory and monitoring methods. New York (NY): Elsevier Academic Press; 2004, p. 595. Google Scholar
2. Beuchat LR. Media for detecting and enumerating yeasts and moulds. Int J Food Microbiol. 1992;17(2):145158. Google Scholar
1. El-Shaarawi A, Qureshi AA, Dutka BJ. Study of microbiological and physical parameters in Lake Ontario adjacent to the Niagara River. J Great Lakes Res. 1977;3(3–4):196203. Google Scholar
1. Qureshi AA, Dutka BJ. Comparison of various brands of membrane filter for their ability to recover fungi from water. Appl Environ Microbiol. 1978;32(3):445447. Google Scholar
1. Dumitru R, Hornby JM, Nickerson KW. Defined anaerobic growth medium for studying Candida albicans, basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother. 2004;48(7):23502354. Google Scholar
Lodder J, ed. The yeasts, a taxonomic study, 2nd ed. Amsterdam: North-Holland Publishing Company; 1970. Google Scholar
Buck JD. Distribution of aquatic yeasts—effect of inoculation temperature and chloramphenicol concentration on isolation. Mycopathologia. 1975;56(2):7379. Google Scholar
Kurtzman CP, Fell JW. Yeasts. In: Biodiversity of fungi, inventory and monitoring methods. New York (NY): Elsevier Academic Press; 2004, p. 337. Google Scholar
1. Barr DJS. 5. Chytridiomycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA, eds. The mycota, Part A, vol. VII. New York (NY): Springer Verlag; 2001. Google Scholar
2. Boyle DG, Boyle DB, Olson V, Morgan JAT, Hyatt AD. Rapid quantitative detection of chytridiomycosis (Batra-chochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org. 2004;60(2):141148. Google Scholar
3. Sigee DS. Chapter 8. Fungi and fungal-like organisms: aquatic biota with a mycelial growth form. In: Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment. West Sussex: John Wiley & Sons; 2005. Google Scholar
4. Neish GA, Hughes GC. Diseases of fishes. In: Book 6, Fungal diseases of fishes. Neptune (NJ): T.W.F. Publications; 1980. Google Scholar
5. Sime-Ngando T, Lefevre E, Gleason FH. Hidden diversity among aquatic heterotrophic flagellates: ecological potentials of zoosporic fungi. Hydrobiologia. 2011;659(1):522. Google Scholar
6. Shearer CA, Langsam DM, Longcore JE. Fungi in freshwater habitats. In: Biodiversity of fungi, inventory and monitoring methods. New York (NY): Elsevier Academic Press; 2001, p. 513. Google Scholar
7. Ho HH. Selective media for the isolation of Saprolegnia spp. from fresh water. Can J Microbiol. 1975;21(7):11261128. Google Scholar
Willoughby LG. The occurrence and distribution of reproductive spores of Saprolegniales in fresh water. J Ecol. 1962;50(3):733759. Google Scholar
Kamoun S. Molecular genetics of pathogenic oomycetes. Eukaryotic Cell. 2003;2(2):191199. Google Scholar
Barlocher F. Research on aquatic hyphomycetes: historical background and overview. In: Barlocher F, ed. The ecology of aquatic hyphomycetes. Berlin: Springer-Verlag; 1992. Google Scholar
Sati SC, Bisht S. Utilization of various carbon sources for the growth of waterborne conidial fungi. Mycologia. 2006;98(5):678681. Google Scholar
Seifert K, Morgan-Jones G, Gams W, Kendrick B. The genera of Hyphomycetes. CBS Biodiversity Series, Vol. 9. The Netherlands: CBS Fungal Biodiversity Centre; 2011. Google Scholar
1. Anaissie EJ, et al. Fusariosis and pathogenic Fusarium species in a hospital water system: a new paradigm for the epidemiology of opportunistic mould infections. Clin Infect Dis. 2001;33(11):18711878. Google Scholar
2. Warris A, Gaustad P, Meis JFGM, Voss A, Verweij PE, Abrahamsen TG. Recovery of filamentous fungi from water in a paedriatic bone marrow transplantation unit. J Hosp Infect. 2001;47(2):143148. Google Scholar
3. Anaissie EJ, Stratton SL, Dignani MC, Lee C, Summerbell RC, Rex JH, Monson TP, Walsh TJ. Pathogenic molds (including Aspergillus species) in hospital water distribution systems: a 3-year prospective study and clinical implications for patients with hematologic malignancies. Blood. 2003;101(7):25422546. Google Scholar
4. Buck JD, Bubacis BM. Membrane filter procedure for enumeration of Candida albicans in natural waters. Appl Environ Microbiol. 1978;35(2):237242. Google Scholar
5. Dumitru R, Hornby JM, Nickerson KW. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother. 2004;48(7):23502354. Google Scholar
6. Berman J, Sudbery PE. Candida albicans: a molecular revolution built on lessons from budding yeasts. Nature. 2002;3(12):918931. Google Scholar
Rippon J. Medical mycology. Philadelphia (PA): W.B. Saunders Co.; 1982. Google Scholar
1. Fredricks D N, Smith C, Meier A. Comparison of six extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J Clin Microbiol. 2005;43(10):51225128. Google Scholar
2. Microbiological and Chemical Exposure Assessment. EPA technology for mold identification and enumeration. U.S. Environmental Protection Agency; 2014. Google Scholar
3. Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD. Rapid quantitative detection of chytridiomycosis (Batra-chochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org. 2004;60(2):141148. Google Scholar
4. Guedes, HLDM, Guimarães AJ, Muniz MDM, Pizzini CV, Hamilton AJ, Peralta JM, Deepe GS Jr, Zancope-Oliveira RM. PCR assay for identification of Histoplasma capsulatum based on the nucleotide sequence of the M antigen. J Clin Microbiol. 2003;41(2):535539. Google Scholar
5. Henry T, Iwen PC, Hinrichs SH. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol. 2000;38(4):15101515. Google Scholar
6. White T, Burns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. Google Scholar
7. Van Burik J, Myerson D, Schreckhise R, Bowden R. Panfungal PCR assay for detection of fungal infection in human blood specimens. J Clin Microbiol. 1998;36(5):11691175. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 9610 detection of fungi In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.203

SHARE

FROM THE DISCUSSION FORUM: