The content presented here represents the most current version of this section, which was printed in the 24th edition of Standard Methods for the Examination of Water and Wastewater.
1. Fowler M, Carter RF. 1965. Acute pyogenic meningitis probably due to Acanthamoeba sp.: a preliminary report. Br Med J. 1965;2(5464):734742. Google Scholar
2. Bartrand TA, Causey JJ, Clancy JL. Naegleria fowleri: An emerging drinking water pathogen. J Am Water Works Assoc. 2014;106(10):E418E432. Google Scholar
3. Bright KR, Marciano-Cabral F, Gerba CP. Occurrence of Naegleria fowleri in Arizona drinking water supply wells. J Am Water Works Assoc. 2009;101(11):4350. Google Scholar
4. Yoder JS, Straif-Bourgeois S, Roy SL, Moore TA, Visvesvara GS, Ratard RC, Hill VR, Wilson JD, Linscott AJ, Crager R, et al. Primary amebic meningoencephalitis deaths associated with sinus irrigation using contaminated tap water. Clin Inf Dis. 2012; 55(9):e79e85. Google Scholar
5. Cope JR, Ratard RC, Hill VR, Sokol T, Causey JJ, Yoder JS, Mirani G, Mull B, Mukerjee KA, Narayanan J, et al. The first association of a primary amebic meningoencephalitis death with culturable Naegleria fowleri in tap water from a US treated public drinking water system. Clin Infect Dis. 2015;60(8):e3642. Google Scholar
6. Centers for Disease Control and Prevention. Notes from the field: primary amebic meningoencephalitis associated with ritual nasal rinsing—St Thomas, U.S. Virgin Island, 2012. MMWR Morb Mortal Wkly Rep. 2013;62(45):903. Google Scholar
7. Moffat JF, Tompkins LS. A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect Immun. 1992;60(1):296301. Google Scholar
8. Magnet A, Peralta RHS, Gomes TS, Izquierdo F, Fernandez-Vadillo C, Galvan AL, Pozuelo MJ, Pelaz C, Fenoy S, Del Águila C. Vectorial role of Acanthamoeba in Legionella propagation in water for human use. Sci Total Environ. 2015;505:889895. Google Scholar
9. Balamuth W. Nutritional studies on axenic cultures of Naegleria gruberi. J Protozool. 1964;11(Suppl):1920. Google Scholar
10. Morgan MJ, Halstrom S, Wylie JT, Walsh T, Kaksonen AH, Sutton D, Braun K, Puzon GJ. Characterization of a drinking water distribution pipeline terminally colonized by Naegleria fowleri. Environ Sci Technol. 2016;50(6):28902898. Google Scholar
11. Blair B, Sarkar P, Bright KR, Marciano-Cabral F, Gerba CP. Naegleria fowleri in well water. Emerg Infect Dis. 2008;14(9):14991501. Google Scholar
12. Lares-Villa F, Hernández-Peña C. Concentration of Naegleria fowleri in natural waters used for recreational purposes in Sonora, Mexico (November 2007-October 2008). Exp Parasit. 2010;126(1):3336. Google Scholar
13. Smith CM, Hill VR. Dead-end hollow-fiber ultrafiltration for recovery of diverse microbes from water. Appl Environ Microbiol. 2009;75(16):52845289. Google Scholar
14. Hill VR, Polaczyk AL, Hahn D, Narayanan J, Cromeans TL, Roberts JM, Amburgey JE. Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Appl Environ Microbiol. 2005;71(11):68786884. Google Scholar
15. Pernin P, Pélandakis M, Rouby Y, Faure A, Siclet F. Comparative recoveries of Naegleria fowleri amoebae from seeded river water by filtration and centrifugation. Appl Environ Microbiol. 1998;64(3):955959. Google Scholar
16. Page FC. An illustrated key to freshwater and soil amoebae with notes on cultivation and ecology. Ambleside (Cumbria): Freshwater Biological Association; 1978. Scientific Publication No. 34. Google Scholar
17. Page FC. A new key to freshwater and soil gymnamoebae. Ambleside (Cumbria): Freshwater Biological Association, 1988. Google Scholar
18. Smirnov AV, Brown S. Guide to the methods of study and identification of soil gymnamoebae. Protistology. 2004;3(3):148190. Google Scholar
19. Puzon GJ, Lancaster JA, Wylie JT, Plumb JJ. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples. Environ Sci Technol. 2009;43(17):66916696. Google Scholar
20. Pélandakis M, Serre S, Pernin P. Analysis of the 5.8S rRNA gene and the internal transcribed spacers in Naegleria spp. and in N. fowleri. J Eukary Microbiol. 2000;47(2):116121. Google Scholar
21. Robinson BS, Monis PT, Dobson PJ. Rapid, sensitive, and discriminating identification of Naegleria spp. by real-time PCR and melting-curve analysis. Appl Environ Microbiol. 2006;72(9):58575863. Google Scholar
22. Behets J, Declerck P, Delaedt Y, Verelst L, Ollevier F. Quantitative detection and differentiation of free-living amoeba species using SYBR green-based real-time PCR melting curve analysis. Current Microbiol. 2006;53:506509. Google Scholar
23. Qvarnstrom Y, Visvesvara GS, Sriram R, Da Silva AJ. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol. 2006;44(10):35893595. Google Scholar
24. Reveiller FL, Cabanes PA, Marciano-Cabral F. Development of a nested PCR assay to detect the pathogenic free-living amoeba Naegleria fowleri. Parasitol Res. 2002;88:443450. Google Scholar
25. Streby A, Mull BJ, Levy K, Hill VR. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment. Parasitol Res. 2015;114: 17391746. Google Scholar
26. Mull BJ, Narayanan J, Hill VR. Improved method for the detection and quantification of Naegleria fowleri in water and sediment using immunomagnetic separation and real-time PCR. J Parasitol Res. 2013 [accessed 2020 Mar 31] http://dx.doi.org/10.1155/2013/608367. Google Scholar
27. Zhou L, Sriram R, Visvesvara GS, Xiao L. Genetic variations in the internal transcribed spacer and mitochondrial small subunit rRNA gene of Naegleria spp. J Eukaryot Microbiol. 2003;50(s1): 522526. Google Scholar
28. De Jonckheere JF. Molecular definition and the ubiquity of species in the genus Naegleria. Protist. 155(1):89103. Google Scholar
29. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611622. Google Scholar
30. Quality assurance/quality control guidance for laboratories performing PCR analyses on environmental samples. EPA 815-B-04-001. Washington DC: Office of Water, U.S. Environmental Protection Agency; 2004. Google Scholar
31. Bukhari Z, LeChevallier MW, Jjemba P, Johnson W, Haas C, Hamilton K. Development of a risk management strategy for Legionella in reclaimed water systems. Final Report Project No. Reuse-12-05/4756. Denver (CO): The Water Research Foundation; 2018. Google Scholar
32. Moura H, Izquierdo F, Woolfitt AR, Wagner G, Pinto T, del Aquila C, Barr JR. Detection of biomarkers of pathogenic Naegleria fowleri through mass spectrometry and proteomics. J Eukaryot Microbiol. 2015;62(1):1220. Google Scholar
33. Mahittikorn A, Mori H, Popruk S, Roobthaisong A, Sutthikornchai C, Koompapong K, Siri S, Sukthana Y, Nacapunchai D. Development of a rapid, simple method for detecting Naegleria fowleri visually in water samples by loop-mediated isothermal amplification (LAMP). PLoS One. 2015;10(3):e0120997. Google Scholar
34. Yu Z, Miller HC, Puzon GJ, Clowers BH. Application of untargeted metabolomics for the detection of pathogenic Naegleria fowleri in an operational drinking water distribution system. Water Res. 2018;145:678686. Google Scholar

Related

No related items

CITATION

Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation. 9750 detection of naegleria fowleri in water (proposed) In: Standard Methods For the Examination of Water and Wastewater. Lipps WC, Baxter TE, Braun-Howland E, editors. Washington DC: APHA Press.

DOI: 10.2105/SMWW.2882.252

SHARE

FROM THE DISCUSSION FORUM: